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Abstract

Electronic structure calculations can now achieve the highly coveted chemical accuracy (less
than 1 kcal/mol average error in energy differences) for molecules with a few dozens of atoms;
however, extending these approaches to larger systems is an area of active research. A major
challenge is devising methods that are widely applicable to both molecules and materials. To
achieve this goal, computational advances must be coupled to a deep understanding of the related
physical principles. Response functions and, in particular, polarizability, play a central role in our
conceptual understanding of both electron correlation and polarization/dispersion interactions –
quantummechanical effects that are notably hard to properly capture due to the underlying non-local
nature of the quantities needed to compute these interactions.

To develop a practical formalism for non-local polarizability, one first needs to deeply elaborate the
corresponding local and semi-local approaches. This can be achieved by studying model systems,
atoms, and molecules, as the numerical results for molecular systems can be complimented by
the physical understanding from the model results. By analyzing quantum systems ranging from
model Hamiltonians to real molecules, in this work it is shown that polarizability can be factored
into a spectrum-dependent and geometry-dependent part. Notably, the geometry-dependent part
influences polarizability by a four-dimensional scaling law, enabling the proper description of
response properties of individual atoms within molecules. A novel parametrization for representing
the response of atoms by an effective harmonic oscillator model is also introduced, showing that
spatially resolved polarization potentials can be predicted using just integrated dipolar properties
of atoms.

Moving frommodel systems and atoms tomolecules, it is found that the corresponding polarizability
andHOMO–LUMO (highest occupiedmolecular orbital – lowest unoccupiedmolecular orbital) gap
are independent. In parallel, the theoretical foundations of non-local polarizability are examined,
presenting expressions for a range of model systems via the polarization field correlation function.
By following a rigorous derivation of this response function, it is shown that not only existing
methods can be obtained from it as limiting cases, but the design of a general non-expanded
many-body dispersion energy functional is also feasible.

Overall, this thesis aims to show that combining the fundamental physics of model systems,
atoms, and molecules with a theory of non-local polarizability can lead to practical functionals for
electronic structure calculations based on the advanced non-local description of response functions.
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Preface

This thesis is partly based on the following publications
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Dimensional Scaling of Dipole Polarizability in Quantum Systems. Physical Review Letters
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tions. The Journal of Chemical Physics 2023, 159, 174802.

libMBD was also used in obtaining most computational results presented in the thesis.
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Notations

AAA, A′A′A′, AAA0, ... coordinates defined in real space∫
+
... d3AAA integration in 3D coordinates

A8, A8,0, ... coordinate of the ith particle in a many-body wavefunction∫
... dA# integration in wavefunction many-electron coordinates

j(AAA, A′A′A′, l) frequency-dependent non-local electric susceptibility

UUU(AAA, A′A′A′, l) frequency-dependent non-local electric polarizability tensor

U mean static dipole polarizability

TTT(AAA, A′A′A′) dipole-dipole coupling tensor

q(AAA) electrostatic potential

��� (AAA) electric field

%%%(AAA) polarization density field

d(AAA) electron density

3̂33 dipole moment operator

Θ̂ΘΘ quadrupole moment operator

b
(=)
UV...l

=th Cartesian multipole moment

@ℓ,< spherical multipole moment

.ℓ,< (\, q) spherical harmonics

'E3F van der Waals radius

Γ`l
fW

reduced two-electron density matrix

444U unit vector of the U component of a coordinate system
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1. Introduction

The fields of theoretical chemistry and molecular physics prompt two approaches to understanding
existing and predicting new phenomena: connecting observable properties to fundamental laws of
physics by theoretical derivations or, alternatively, calculating (and interpolating) a large number
of quantum calculations of molecular properties. Historically, equations were laid out first and
were implemented as efficient algorithms only later. Nowadays, these two approaches work hand
in hand, and it is often numerical simulations that show areas where theoretical developments are
needed.

One area where the synergy between theory and computation is driving the frontiers is the de-
scription of intermolecular interactions. Despite the significant impact of these interactions on
the macroscopic properties of molecules and matter, theories suitable for tractable algorithmic
implementations have only begun to be developed within the last two decades [1]. More recently,
response functions, especially dipole polarizability, have been attracting attention because of a
clear connection to not only non-covalent interactions but also many-electron correlation energy in
general. To date, however, no unified polarizability functional has been found that would generally
be applicable to atoms, molecules, and materials with a manageable computational cost [2].

Motivated by classical electrodynamics, the macroscopic model for polarizability smears out the
quantum mechanical structure of the response, leading to only a local “point” polarizability. How-
ever, even a homogeneous electric field can induce a response in quantum systems that is non-local,
anisotropic, and contains contributions from higher order multipole moments. Therefore, to devise
a general functional based on correct physical principles, knowledge of the non-local polarizability
tensor field is required. This thesis presents advances towards such a method by examining the
properties of the polarizability of model systems, atoms, and molecules, and accounting for the
general non-local nature of this response function.

Polarizability and Interactions of Molecules

The dipole polarizability refers to the tendency of a system to form dipoles to an external perturbing
homogeneous electric field. This concept first arose in macroscopic electrodynamics; therefore,
the polarizability of atoms and molecules was discussed even before the development of quantum
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CHAPTER 1. INTRODUCTION

mechanics. The first polarizability measurements were conducted in the 19th century, based on
the observation that capacitors made from different materials have different capacitances. The
fundamental quantity describing this behavior, the relative permittivity YA , is connected to the
molar polarization %" of the matter, i.e. the density of dipole moments. This dipole moment
density is not only due to the permanent dipole moments 3 of the molecules, but also induced by
the external electronic field, dictated by the polarizability U. This process – at a given temperature
) – is described by the Debye equation [3] (#� is Avogadro’s constant)

YA − 1
YA + 2

=
d%"

"
;

%" =
#�

3Y0

(
U + 32

3:)

)
.

(1.1)

Since relative permittivity and refractive index =A at a given wavelength are connected by =2
A = YA ,

polarizability also determines the refractive index, therefore polarizability can be determined not
only via capacitance, but also by measuring the refraction of light.

Polarizability drives not only the interaction of molecules with external electromagnetic fields but
also intermolecular interactions, since these can be understood by considering the molecules in the
field of each other. Dispersion interaction between two atoms, for example, can be expressed within
the dipole limit at a distance ' by integrating the polarizability over the imaginary frequency a [4]

�disp = −
3ℏ

(4cY0)2c'6

∫ ∞

0
U� (8a)U� (8a) da . (1.2)

Textbooks introducing intermolecular interactions tend to emphasize their weak nature by compar-
ing the binding energy of a pair of atoms that interact through dispersion interaction or covalent
bonding [5]. This comparison – contrasting a few hundred kJ/mol covalent binding energy with
just a few kJ/mol from the dispersion interaction – is not helpful, since it is now known that the
total contribution of long-range interactions within extended systems is often comparable, or even
exceeds, the energy of covalent bonds [6]. In fact, many observable properties of matter stem from
long-range interactions; the existence of molecular solids or liquids is a proof of the strength of
these forces. Therefore, it is essential for accurate simulation methods to account for intermolecular
interactions, and polarizability is a key quantity in achieving this.
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Non-Additive and Multipolar Effects

The equations for intermolecular interactions (for example, the dispersion energy of Eq. (1.2)
and the well-known Lennard-Jones potential) are commonly written for two interacting particles.
However, it is known that long-range forces are not pairwise additive, since the presence of the
environment modifies the interactions.

Figure 1.1: The Lennard-Jones potential;
arguably the best known long-range inter-
atomic potential. The two parameters de-
scribing this potential are the particle size f
(where the potential energy is zero) and the
binding energy n . The equilibrium distance
is given as Aeq. = 21/6f.

The physical effects behind the non-additive contributions to dispersion energy were categorized
by Dobson: “type A” non-additivity refers to the effect of covalent bonding on the dispersion
parameters of atoms; “type B” describes the screening of the interaction between the two partners
by the presence of other particles; and “type C” non-additivity describes the effect of electron
hopping between the pre-defined interaction centers. Most dispersion models can account for “type
A” non-additivity, but “type B” and “type C” effects require explicit many-body models [7].

Another major challenge in electronic structure calculations is a seamless connection between inter-
and intramolecular interactions. The reason of this difficulty is that most intermolecular models are
based on the multipole expansion of the Coulomb interaction, assuming that the contributions due
to higher order multipole moments and polarizabilities are diminishing [8]. The use of the dipole
limit is justified for large intermolecular distances, but higher orders need to be taken into account
in mid to short distances. However, accurate data for multipolar polarizabilities and dispersion
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CHAPTER 1. INTRODUCTION

coefficients are scarce, limiting the practical applicability of the multipole expansion. Moreover,
the multipole expansion suffers from convergence issues when the interparticle separation is not
too large. A method not based on this expansion would be able to seamlessly connect inter- and
intramolecular interactions, leading to more general and less empirical approaches for describing
molecular interactions.

Polarizability and Correlation Energy

The mean-field approximation, where each electron is subject to an effective field from all other
electrons, plays a central role in modern electronic-structure methods. In this approximation, we
solve the # one-electron Schrödinger equations instead of the full #-electron Schrödinger equation,
taking the effect of the environment of all other electrons into account in a mean-field way. The
Hartree-Fock theory is the most influential approach formalizing this idea, approximating the full
#-electron solution by a Slater determinant of one-electron orbitals, thus ensuring that the Pauli
principle is fulfilled. This method introduces key concepts such as exchange energy, defined as the
energy difference between exchanging two electrons of different spin-orbitals having the same spin
in the Slater determinant; and correlation energy, defined as the difference between the Hartree-
Fock and the full #-electron energy. The hierarchy of quantum chemical methods is based on how
much of the correlation energy is captured by each approach. For example, a density functional
capable of treating the correlation energy exactly is often referred to as the holy grail of quantum
chemistry.

Expressing the correlation by systematically increasing the sophistication in the wavefunction is
a successful path in theoretical chemistry, but a different approach is taken in solid state physics.
This alternative path uses response functions to express the electron correlation, similar to the use
of response functions for the interaction between separate molecules. The theoretical formulation
of this approach is the adiabatic connection fluctuation-dissipation theorem (ACFDT), which,
in its most general form, expressed statistical correlations within a system through the response
function of the same system to an external perturbation [9]. However, these approaches suffer
from either an extremely large computational cost or approximations limiting their transferability.
Although most ACFDT-based methods use susceptibility as the central response function, more
recently, polarizability has been proposed as a viable alternative due to the fact that non-local
polarizability is an extensive quantity – opposed to the non-local susceptibility –, prompting the
use of coarse-grained approaches [10] and allowing the circumvention of excessive computational
costs.
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Correlation energy via nonlocal polarizability

Figure 1.2: Interaction energy Δ� between � and � - the correlations within each structure are
captured by the non-local polarizability UUU, the interaction between structures is expressed by the
dipole-dipole coupling TTT of these polarizabilities. Note that in the most general case, the TTT tensor
can also depend on frequency.

The Scope of this Thesis

Because of the central importance of polarizability in describing electron correlation and inter-
molecular interactions, a multitude of models have been constructed in the past 150 years. Building
on simple quantum mechanical model systems and tabulated atomic contribution of molecular po-
larizability, the sophistication of the description can be systematically improved by accounting
for the chemical environment of the atoms, interactions between them, as well as the semi-local
and, eventually, the non-local nature of the response function. Coupled with modern electronic
structure methods, many of these approaches are of practical importance in modeling molecules
and materials. Consequently, the trade-off between physical sophistication and computational
efficiency is a key question attracting contemporary research interest. While, in theory, the full
non-local polarizability would enable us to perform accurate simulations accounting for effects
such as non-locality or many-body interactions, there is currently no practical way to perform such
calculations.

The outlook of thiswork is the eventual construction of a generalmany-body non-local nonexpanded
polarization density functional, that can efficiently describe electron correlation and dispersion
interactions in atoms, molecules, and materials. Since a complete description of polarizability is
equivalent to obtaining the full solution of the Schrödinger equation, any feasible method must rely
on approximations. Model systems and free atoms, for which polarizability can both be exactly
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CHAPTER 1. INTRODUCTION

solved and scaling laws can be established, provide a natural framework for such approximations.
Owing to this importance, Chapter 3 explores the polarizability of model systems and free atoms,
with special attention to scaling lawswith respect to their size. Chapter 4 presents several approaches
for approximating polarizabilities of molecules, using correlations with different properties, and
using a coupled atoms-in-a-molecule approach. Finally, Chapter 5 moves towards a more complete
theory, by presenting the framework for the full non-local polarizability based on the polarization
operator, and evaluating the derived expressions for select model systems.
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2. Background

In Chapter 1, the importance of polarizability in describing electron correlation and long-range
interactions was highlighted. This chapter delves into the physical basis of this quantity, as well
as advanced computational models. First, Sect. 2.1 introduces some basic principles for under-
standing long-range interactions between atoms or molecules, the context in which polarizability is
commonly used. Currently available methods with varying levels of sophistication to capture the
physics of polarizability are presented in Sect. 2.2. Finally, some conceptually important model
systems are introduced in Sect. 2.3.

2.1 Quantum Mechanical Description of Long-Range Interac-
tions

The well-known concepts of multipole moments and multipolar polarizabilities can be introduced
by examining the Taylor expansion of theCoulomb potential, enabling us to consider the interactions
of molecules with external fields and other molecules in the same context. Therefore, the discussion
will be built up as follows: first, themultipole expansionwill be described, with the specific example
of an atom or molecule interacting with an external electric field (with the notation loosely based
on [11]). After the concept of multipole moments is introduced in such a way, the interaction
between two separate atoms or molecules will be discussed, naturally leading to the definition of
multipole polarizabilities. This arrangement of ideas follows the presentation as seen in [4].

The multipole expansion can be obtained from the Taylor series representation of the Coulomb
potential [11]. We start from an arbitrary charge distribution d(r′) and are interested in the potential
due to this charge density at the point r. We assume that one point is close to the origin and the
other is far, namely r � r′. The Coulomb potential due to the charge density is given by

+ (r) =
∭

+ ′

d(r′)
|r − r′| d

3AAA′ . (2.1)
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CHAPTER 2. BACKGROUND

The distance between the vectors can be written as

1
|r − r′| =

1

A

√����1 − 2 r̂·r′
A
+

(
A ′
A

)2
���� . (2.2)

With the assumption r � r′, the term under the square root can be expressed with a small n as

1
|r − r′| =

1
A
√

1 + n
. (2.3)

Using Taylor series expansion around n = 0, we obtain

(1 + n)−1/2 = 1 − n
2
+ 3n2

8
− 5n3

16
+ ... (2.4)

Note that if we allow for the extension of the binomial function using the Gamma function instead
of the factorial, the Taylor expansion can be given in a closed form

(1 + n)−1/2 =
∞∑
==0

(
−1/2
=

)
n= . (2.5)

Finally, the general multipole operator b of rank = in Cartesian form (written for a one-center
expansion for simplicity, with the indices U, V..., l representing the basis set components) is given
as

b
(=)
UV...l

=
(−1)=
=!

A2=+1mAl ...mAVmAU

(
1
A

)
. (2.6)

Some examples of multipole operators are the dipole 3̂33, quadrupole Θ̂ΘΘ and octupole Ω̂ΩΩ moment
operators, which have select components such as
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2.1. QUANTUMMECHANICAL DESCRIPTION OF LONG-RANGE INTERACTIONS

3G = −A3mG

(
1
A

)
= G ,

ΘGG =
A5

2
mGmG

(
1
A

)
=

1
2

(
3G2 − A2

)
,

ΩIII =
−A7

6
mImImI

(
1
A

)
= I

(
5
2
I2 − 3

2
A2

)
.

(2.7)

The multipole contributions of a charge density d(AAA) can then be identified, for example, by
considering the potential generated at a faraway point AAA′

q(AAA) =
∫
+ ′

d(AAA′)
|AAA − AAA′| d

3AAA′ =
∞∑
==0
∇∇∇=

(
1
A

) ∫
+ ′
d(AAA′)b (=)

UV...l
(AAA′) d3AAA′ . (2.8)

Equations (2.6)-(2.8) are somewhat tedious. Moreover, some Cartesian indices in Eq. (2.7) are
redundant due to Schwarz’s theorem m8m9 5 = m9m8 5 . An alternative approach that results in
mathematically more convenient equations is to use the spherical harmonics for the multipole
expansion

q(AAA) =
∞∑
ℓ=0

ℓ∑
<=−ℓ

4c
2ℓ + 1

@ℓ<
.ℓ< (\, q)
Aℓ+1

, (2.9)

with the multipole moments defined as

@ℓ< =

∫
+ ′
. ∗ℓ< (\

′, q′)A′ℓd(AAA′) d3AAA′ . (2.10)

As per Eq. (2.8), expansion of the Coulomb potential leads to the multipole moments of the charge
density. The energy of a molecule in an external electric potential is also expressed using the same
moments. To demonstrate this fact, let us consider the first-order contribution to the energy within
Rayleigh-Schrödinger perturbation theory. If the perturbation is given by an arbitrary potential
�′ = + (AAA − AAA′), then the first-order correction to the energy reads

9



CHAPTER 2. BACKGROUND

� (1) (AAA) = 〈0|�̂′|0〉 =
∫
+ ′
d(AAA′)+ (AAA − AAA′) d3AAA′ =

∞∑
==0
∇∇∇=+ (AAA)

∫
+ ′
d(AAA′)b (=)

UV...l
(AAA′) d3AAA′ . (2.11)

If the potential is Coulombic (e.g. due to an external point charge), Eq. (2.11) is nominally equivalent
to Eq. (2.8). In general, Eq. (2.11) shows that the =th multipole moment interacts with the =th
gradient of the external potential; e.g., the total charge interacts with the electric potential, the
dipole moment interacts with the gradient of the potential (the homogeneous component of the
electric field), and so on.

The second-order contribution to the energy in the external field is given by

−
∑
=≠0

〈0|+ (AAA − AAA′) |=〉 〈=|+ (AAA − AAA′) |0〉
�= − �0

=

−
∑
=≠0

〈0|∑∞< ∇∇∇"+ (AAA)b (<)UV...l
(AAA′) |=〉 〈=|∑∞< ∇∇∇"+ (AAA)b (<)UV...l

(AAA′) |0〉
�= − �0

.

(2.12)

Similarly to the previous considerations, the matrix elements in Eq. (2.12) are integrated over AAA′,
factoring out the potential gradients. Multipole polarizabilities can be identified [4] as

� (2) (AAA) = −1
2
∇∇∇+ (AAA)UUU∇∇∇+ (AAA) − 1

3
∇∇∇2+ (AAA)���∇∇∇+ (AAA) − 1

6
∇∇∇2+ (AAA)���∇∇∇2+ (AAA) + ... (2.13)

The most common example is the dipole-dipole polarizability, calculated using the matrix elements
of the operators of the corresponding Cartesian coordinate components (with @ being the total
charge)

UGG = 2@2
∑
=≠0

〈0|Ĝ |=〉 〈=|Ĝ |0〉
�= − �0

. (2.14)

Comparing the energy expressions of Eqs. (2.11)-(2.13), one can gain a physical interpretation of
the multipole polarizability: it connects induced multipole moments to gradients of the external
potential. This definition is also imminent in the spherical tensor representation of polarizability,
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2.1. QUANTUMMECHANICAL DESCRIPTION OF LONG-RANGE INTERACTIONS

which defines Uℓ<,ℓ′<′ as the induced (ℓ<)th multipole moment by the (ℓ′<′)th moment of the
potential [4], given as

Uℓ<,ℓ′<′ =
∑
=≠0

〈0|@ℓ< |=〉 〈=|@ℓ′<′ |0〉 + 〈0|@ℓ′<′ |=〉 〈=|@ℓ< |0〉
�= − �0

. (2.15)

Multipole moments and multipole polarizabilities are used to describe the energy of atoms and
molecules in external potentials, but intermolecular interactions can also be understood using
these quantities. In this context, the Hamiltonian of the full system that contains nucleus–nucleus,
nucleus–electron and electron–electron interactions (in atomic units) reads

Htot = −
∑
�

∇∇∇2
�

2"�

−
∑
8

∇∇∇2
8

2
−

∑
8,�

/�

A8�
+

∑
�>�

/�/�

A��
+

∑
8> 9

1
A8 9

. (2.16)

The nuclear degrees of freedom in Eq. (2.16) are represented by capital letters � and �, while the
electronic degrees of freedom are represented with 8 and 9 . The Born-Oppenheimer approximation
will be employed throughout the thesis, focusing on the electronic subsystem only, meaning that the
kinetic and potential energy operators for nuclei will be omitted (by shifting the reference energy),
and the electrostatic repulsion between nuclei will be treated as a constant background charge field
in the electronic Hamiltonian.

Equation (2.16) treats all electrons and nuclei on equal footing within the same Cartesian coordinate
system. Long-range interactions, in general, are discussed in the context of atoms and molecules
at a large distance. A natural way is to assume that some electrons and nuclei belong to one part
(�) of the entire system, whereas the others belong to another part (�). The total Hamiltonian is
then the sum of the non-interacting Hamiltonians of � and � as well as an interaction term

Htot = H� + H� +
∑
0∈�

∑
1∈�

@0@�

A01
, (2.17)

where 0 and 1 can represent a nucleus or an electron, with @0 = /0 for nuclei and @0 = −1 for
electrons.

Intermolecular forces were historically discussed within quantum mechanics by treating the in-
teraction term in Eq. (2.41) using Rayleigh-Schrödinger perturbation theory. To use perturbative
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formulas, the wavefunctions of the unperturbed Hamiltonians are needed. Since the unperturbed
Hamiltonian is a sum of two independent terms when the overlap is neglected, the total wavefunc-
tion can be written as a product of the individual eigenfunctions. The states of the unperturbed
Hamiltonian are then written as |<=〉, where < and = are the quantum numbers belonging to �
and �, respectively, with |00〉 representing the ground state of the total (non-interacting) system.
The first-order correction to the energy from the Rayleigh-Schrödinger theory is given as (using
the notationH ′ for the perturbation)

� (1) = 〈00|Ĥ ′|00〉 , (2.18)

whereas the second-order correction reads

� (2) = −
∑
<=≠0

〈00|Ĥ ′|<=〉 〈<=|Ĥ ′|00〉
� �< + ��= − � �0 − �

�
0

, (2.19)

where it is required that |<=〉 is an excited-state wavefunction, so either = or < is non-zero: if only
one subsystem is excited, we refer to the energy contribution as induction; if both subsystems are
excited, then it is called as dispersion.

The first-order correction in Eq. (2.18) is the electrostatic interaction energy. Explicitly writing out
the matrix element, one can see that the formula obtained can be interpreted as arising from the
energy of species � in the potential of � (or vice versa)

�electrostatic = 〈00|Ĥ ′|00〉 =
∫
+ ′

d� (AAA′)d� (AAA′)
|AAA − AAA′| d3AAA′ =

∫
+ ′
d� (AAA′)+� (AAA′) d3AAA′ , (2.20)

which can also be interpreted using the gradients of the potential that act on the multipole moments
of the charge distribution, as was already discussed for Eq. (2.11). As will be mentioned later, the
exchange energy also arises from the first-order correction if antisymmetrized wavefunctions are
considered.

Induction can be treated in a similar manner. Using the ground state |0〉 for atom � and the excited
state |=〉 for �, the induction energy, up to dipole contributions to the potential generated by �,
is [4]
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�induction = −
∑
=≠0

〈00|Ĥ ′|0=〉 〈0=|Ĥ ′|00〉
��= − ��0

=

−
(
@�∇∇∇1

A
− 333�∇∇∇2 1

A

) ∑
=≠0

〈0|Ĥ ′|=〉 〈=|Ĥ ′|0〉
��= − ��0

(
@�∇∇∇1

A
− 333�∇∇∇2 1

A

)
,

(2.21)

with rewriting the part corresponding to atom � similarly as in Eq. (2.20) and noticing that the sum-
over-states expression gives (half) the dipole polarizability for atom �. The dipole contribution to
the induction energy is then, using the electric field of atom �

�induction = −
1
2
∇∇∇+ �UUU�∇∇∇+ � , (2.22)

which shows that the induction energy can be interpreted as the interaction of atom � with the
induced multipole moments of atom �. The total induction energy is twice that of Eq. (2.22), as
the interaction between � and � should have two symmetric contributions.

Similar considerations for the dispersion interaction lead to the formula (still in dipole approxima-
tion)

�disp = −
∑
<=≠0

〈00|Ĥ ′|<=〉 〈<=|Ĥ ′|00〉
��= + � �< − ��0 − �

�
0

=

−
(
∇∇∇2 1
A

) ∑
<=≠0

〈0|3̂33� |<〉 〈< |3̂33� |0〉 〈0|3̂33� |=〉 〈=|3̂33� |0〉
��= + � �< − ��0 − �

�
0

(
∇∇∇2 1
A

)
.

(2.23)

The expression in Eq. (2.23) cannot be easily factored into a product of the properties of atom �

and � due to the mixing of terms in the denominator. An approach is to use the identity proposed
by McLachlan [12]

1
� + � =

2
c

∫ ∞

0

��

(�2 + l2) (�2 + l2)
dl . (2.24)

The energy denominator in Eq. (2.23) iswritten asl�<+l�= (in atomic units, with ℏ = 1), interpreting
the energy differences as transition frequencies, delivering the following formula

13



CHAPTER 2. BACKGROUND

�disp = −
(
∇∇∇2 1
A

) ∫ ∞

0

∑
<≠0

〈0|3̂33� |<〉 〈< |3̂33� |0〉
(l�<)2 + l2

∑
=≠0

〈0|3̂33� |=〉 〈=|3̂33� |0〉
(l�= )2 + l2 dl

(
∇∇∇2 1
A

)
. (2.25)

This formulation allows us to identify the polarizabilities at imaginary frequencies, when written
(using the components of the dipole-dipole coupling tensor, ∇∇∇21/A = TTT) as

�disp = −
1

2c
)UV)WX

∫ ∞

0
U�UX (8a)U�VW (8a) da , (2.26)

commonly expressed in Cartesian coordinate basis (using the Kronecker delta notation) as

)UV =
(3'U'V − '2XUV)

'5 , (2.27)

and the integral over the imaginary frequencies referred to as the Casimir-Polder [13, 14] formula.
For spherical atoms, we have

)UV)WX =
(3'U'V − '2XUV) (3'W'X − '2XWX)

'10 =
6
'6 , (2.28)

leading to the well-known “R−6” formula describing the decay of the dipole contribution to disper-
sion energy as a function of the interatomic distance '

�disp = −
3
c'6

∫ ∞

0
U� (8a)U� (8a) da . (2.29)

This energy is often written as

�disp = −
�6

'6 , (2.30)

using �6 coefficients that contain the full complexity of the two-body dipole-dipole dispersion
interaction. It can be shown [4] that higher-order contributions to the dispersion energy can also be
approximately recast into a relatively simple decay formula (having a Casimir-Polder formula for
each �= coefficient written using the respective interacting higher-order polarizabilities), leading
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to the expression [15] representing the dispersion energy as a sum of =th-order contributions

�disp =
∑
=

�
(=)
disp = −

∑
==6,8,10,...

�=

'=
. (2.31)

Finally, similarly to the electrostatic forces that were interpreted via the interaction between multi-
pole moments and induction as an interaction between permanent and induced multipole moments,
dispersion can also be seen as the interaction between fluctuating multipole moments.

Although the exchange interaction lies beyond the scope of this thesis, the effects caused by the
Pauli repulsion can be still mentioned for the sake of completeness. A commonly used method to
calculate intermolecular interactions is symmetry-adapted perturbation theory (SAPT), which can
also account for exchange effects. This approach is based on the fact that the product wavefunction
|00〉 cannot be used in intermediate to short ranges, but a properly antisymmetrized wavefunction
requires more elaborate treatments than the Rayleigh-Schrödinger perturbation theory [4, 16]. The
fundamental idea of SAPT-based methods is to consider a wavefunction that fulfills the Pauli
repulsion

Ψ = �̂ |00〉 , (2.32)

where the unperturbed wavefunction is antisymmetrized by applying the operator �̂, which is a
proper sum of intermonomer perturbation operators. In practice, monomer wavefunctions are
calculated using an approximate computational approach, leading to SAPT(HF), SAPT(DFT) and
similarly named methods. The advantage of all these approaches is that no dimer calculation has to
be performed; therefore, the computational scaling is favorable, as well as basis set superposition
error does not play a role. The disadvantage is that the interaction between monomers is taken
into account only in a perturbative way, so relaxation effects resulting from the interaction are very
limited.

The interaction energy between monomers in SAPT is expanded in the series of a perturbing
operator, the polarization part � (=)pol obtained from the standard Rayleigh-Schrödinger theory and
the exchange � (=)exc obtained from the antisymmetrized theory

15



CHAPTER 2. BACKGROUND

�SAPT =

∞∑
==1

�
(=)
pol + �

(=)
exc . (2.33)

Up to second order, SAPT accounts for electrostatic, exchange, induction, dispersion, and exchange-
dispersion interactions.

In summary, this Section shows how the long-range interactions between molecules are described
with the help of perturbation theory and the multipole expansion of the Coulomb potential. Elec-
trostatic, induction, and dispersion energy is expressed using the interaction of multipole moments
and multipole polarizabilities via the corresponding gradients of the potential; these quantities play
a central role in the rest of the thesis.

2.2 Stairway of Polarizability Methods

Investigating the polarizability of atoms and molecules predates the theory of quantum mechan-
ics [17, 18]. Measurements of relative permittivity and index of refraction were among the first
experiments in establishing our modern understanding of the structure of matter, with the Lorentz-
Lorenz equation linking microscopic quantities (polarizability U and number of molecules #) with
the macroscopic refractive index =A

=2
A − 1
=2
A + 2

=
#U

3
. (2.34)

Interestingly, Eq. (2.34) discovered by Lorentz and Lorenz independently is equivalent to the
Clausius-Mosotti and Debye formulas of Eq. (1.1) – a rare case of multiple discovery in the history
of science, which also underlines the central role of polarizability in the development of molecular
physics. It was also known at the turn of the 19th–20th century that the refractive index of molecules
is approximately the sum of partial contributions, and it was Lorentz who first proposed that, due to
Eq. (2.34), this additive property carries over to the polarizability of molecules, possibly providing
the first intuitive theory of molecular polarizability [18].

Today, owing to the key role of polarizability for intermolecular interactions and electron correla-
tion, there is a wide variety of predictive methods for this quantity, with varying levels of physical
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sophistication behind them. This Section sets out to categorize some of these methods by organiz-
ing them into a “stairway” pattern, each step building on the physical picture of the ones behind it,
eventually reaching a full theory accounting for all non-local effects. The basic physical model of
each step can be summarized as follows

Fixed atomic
values

Environment-specific
atomic values

Interacting atoms

Semi-local models

Non-local
theory

Electr
onic 

str
uctu

re ca
lcu

latio
ns

Figure 2.1: A stairway of different polarizability models with increasingly sophisticated physical
description.

• Step I: Fixed atomic values. It has been known since before the development of quantum
mechanics that molecular polarizability, up to a relatively good accuracy, can be predicted by
using tabulated values per atom types. Such methods can be parametrized from experimental
data of a handful of molecules or by computational analysis of a substantial subset of the
chemical compound space.

• Step II: Environment-specific atomic values. The obvious flaw of using static, tabulated
atomic contributions is that it neglects the actual chemical environment of these atoms
within molecules. The models of Step II attempt to include the effect of the local chemical
environment by using valence-dependent correction factors or by using a parametrization
based on electron density.

• Step III: Interacting atoms. While the largest modifications to the “base” polarizability
of atoms are due to the local chemical environment, a long-range electrostatic screening
between atoms is necessary to properly capture the molecular polarizability, especially if
high accuracy in terms of its anisotropy is desired.
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• Step IV: Semi-local models. By properly parametrizing the atomic response accounting
for both short- and long-range effects, it should be possible in principle to capture the
polarizability of atoms-in-molecules. However, the spatial distribution of polarizability can
lead to important insights into which regions in amolecule contribute themost to the response
of a given atom, which is especially useful for coarse-graining principles.

• Step V: Non-local theory. Semi-local models can lead to an intuitive understanding of the
spatial distribution of electronic response, but a generally proper theory can only be built
on non-local (spatially two-point) response functions. Knowledge of the exact non-local
polarizability would also deliver the exact correlation energy in a non-expandedway, enabling
the description of intermolecular interactions and intramolecular electron correlation with
the same functional.

In addition to the methods presented on the stairway, correlations between polarizability and
various molecular properties can also lead to useful insights, such as the recent observation that
polarizability scales with the fourth power of the characteristic size of the system [19].

The correlation between polarizability and orbital energies is relevant from a theoretical point of
view, as it forms the basis of Pearson’s hard-soft acid-base (HSAB) theory [20, 21]. Based on
recent theoretical works [19, 22–28], we can postulate that polarizability can be expressed as a
function of two factors that account for i) ground state geometry (e.g., van der Waals radius or
molecular volume) and ii) electronic structure (e.g., ionization energy or hardness) [29]. Although
these correlations provide useful conceptual insights, they have not been used to build accurate
numerical methods [30].

2.2.1 Fixed Atomic Values

The tabulation of atomic contributions to the total molecular polarizability was the first attempt
to understand the physical origin of the polarizability, and this method was proven to be largely
successful. As alreadymentioned, this approachwas suggested byLorentz, based on the observation
that refractive indices can be approximated with an additive approach and, because of their inherent
connection, polarizability must be additive, too [18].

The statement that the polarizability of a molecule is seemingly the sum of its parts was common
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knowledge in the last century [17], and although the interaction between atomsmodifies this picture
(see below), there were multiple attempts to improve the tabulated parameters [31]. Most recently,
this approach was revisited by us [29], showing that the atomic additive approximation provides
a relatively good performance even when thousands of diverse organic molecules are considered.
We have also highlighted that this extensivity of polarizability inherently means that no correlation
can be observed with size-independent intensive quantities, such as the HOMO–LUMO gap.

2.2.2 Environment-Specific Atomic Contributions

Instead of using tabulated atomic polarizabilities, a better prediction can be achieved by letting
the contribution of each atom-type depend on the hybridization of the atom in the molecule [32].
This observation is also corroborated by methods that express the polarizability of chemical bonds
rather than atoms [33].

Environment-specific polarizabilitymodels can be used in dispersion correction schemes for density
functional theory because the geometry and electronic structure of the molecule in question are
readily available from electronic structure calculations. A commonly used dispersion correction is
Grimme’s DFT–D3 [15, 34] scheme, where the dispersion energy as a function of the distance A8 9
between atoms 8 and 9 is given as

�disp = −
#0C∑
8=1

∑
9<8

©« 53,6(A8 9 )
�6,8 9

A6
8 9

+ 53,8(A8 9 )
�8,8 9

A8
8 9

ª®¬ , (2.35)

with �6 and �8 dispersion coefficients explicitly depending on the coordination of the atoms (and
the damping functions 5 of the method).

Grimme’s DFT–D3 is used to calculate the dispersion energy. An alternative approach, the
Tkatchenko-Scheffler (TS) method, was also originally proposed as a dispersion correction scheme,
but it was shown (and it is also revisited later in this thesis) that it can be used to approximate the
polarizability of molecules as a sum of atomic contributions [35]. In the TS method, one rescales
free atomic reference polarizabilities and dispersion coefficients using the volume + of the atoms
in the molecule as
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Ueff
= = Ufree

=

(
+eff
=

+ free
=

) ?
; �eff

6,= = �
free
6,=

(
+eff
=

+ free
=

)@
, (2.36)

originally with setting ? = 1 and @ = 2, although a value of @ = ? − 0.615 was suggested by
Gould [36], whereas the scaling law for polarizability is revisited in Chapter 3 of this thesis.

2.2.3 Interacting Atoms

An approach developed in parallel with increasingly sophisticated atomic parametrization is to ac-
count for the electrostatic screening between atoms. This idea was first suggested by Silberstein [37]
by means of a dipole coupling between the tabulated atomic values, revisited by Applequist not
long after [38]. A popular method based on interacting atoms is the Thole model [39], which was
recently extended by an additional step of environment-specific screening [40] , written for the
dipole moment 3338 of an atom 8 in an external field ��� employing the dipole polarizability and the
dipole-dipole tensor as

3338 = UUU8 (��� −
∑
9

TTT8 9333 9 ) , (2.37)

obtaining the corresponding polarizability tensors from a set of linear equations.

It is not hard to see that the dipole-dipole interaction is sufficient to describe the electrostatic
screening between localized dipole polarizabilities. It has been shown by Mayer [41] that dipole-
dipole screening of a set of oscillators can be self-consistently performed without resorting to
pairwise calculations. This was later proven to be equivalent to diagonalizing a Hamiltonian of
dipole-coupled quantum Drude oscillators, forming the basis of the many-body dispersion (MBD)
method [42], with the Hamiltonian depending on the individual oscillator displacements b, their
frequenciesl and polarizabilitiesU, with a dipole-dipole couplingTTT between them in the interaction
term

H = −1
2

#∑
8

∇2
b8b8b8
+ 1

2

#∑
8

l2
8 b

2
8 +

#∑
8< 9

l8l 9
√
U8U 9b8b8b8TTT8 9b 9b 9b 9 . (2.38)
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This approach has recently been extended to higher-order multipole contributions [8, 43]. The
coupling between higher multipole moments can be easily obtained by taking higher-order tensorial
derivatives of the Coulomb potential, but obtaining accurate higher-order atomic polarizabilities
remains a challenge [44].

The conceptual advances to go from the first model of Silberstein and Applequist [37, 38] to more
recent self-consistent screening approaches should be clearly emphasized. The first models were
based on interacting point dipoles centered on atoms, without trying to account for their spatial
distribution. Thole [39] has introduced a damping function i that modifies the dipole-dipole
interaction tensor in order to properly describe very short interatomic distances, that otherwise
could lead to even infinite polarizabilities

TTT′ = −TTT
m2i( |AAA8 − AAA 9 |)

mAAA8mAAA 9
, (2.39)

with a spherical potential i fit to satisfy some physical conditions [39, 45]. While Thole pro-
posed that the potential should be expressed in terms of a charge distribution, it was Mayer [41]
who popularized the error-function potential obtainable from the interaction of Gaussian charge
distributions, which serves as a useful damping function.

Building on the observation that the erf damping function can be obtained from the electron density
of the quantum Drude oscillator (see Sect. 2.3), Gobre [46] has extensively studied how potentials
and scaling laws obtained from QDOs could be used to model coupled atomic response. This
approach (named “coupled atomic response in matter”, CARMA) was used to predict non-trivial
scaling laws of different nanostructuredmaterials with the advantage of using a parametrization that
explicitly depends on the local electron density of molecules [47]. Within the CARMA approach,
the dipole width f of an oscillator is frequency-dependent, being obtained from the free atomic
parameters: polarizability U0, atomic QDO dipole density width ffree and the ratio of the free
atomic volume and atom-in-molecule volume as

f(AAA, l) =
(
U0(l)
U0(0)

)1/4 (
+ rel [=(AAA)]

)1/3
ffree . (2.40)
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2.2.4 Semi-Local Models

The general definition of a non-local response function j(AAA, AAA′) contains the derivative of ameasured
quantity G(AAA) with respect to a perturbation ℎ(AAA′) as

j(AAA, AAA′) = mG(AAA)
mℎ(AAA′) . (2.41)

Equation (2.41) expresses the non-local nature of the response function, assuming that both the
perturbation and the change in the observed property can be spatially resolved. For polarizability
(as will be discussed in Chapter 5), the two connected quantities are the polarization field P(r) and
the perturbing electric field E(r). Therefore, recasting Eq. (2.41) in integral form delivers

XP(r) =
∫
+

UUU(r, r′)XE(r′) d3r′ . (2.42)

Neglecting the fully non-local nature of the response and using only its semi-local form UUU(AAA) was
first suggested by Theimer [48], later elaborated by Oxtoby [49], assuming that the non-local nature
of the polarizability can be represented within the integrand as UUU(AAA, AAA′) = UUU(AAA)X(AAA − AAA′), which
gives

XP(r) = UUU(AAA)XE(AAA) . (2.43)

Semi-local response functions are also used in van der Waals (vdW) density functionals. Similarly
to response functions in general, vdW density functionals also aim for a fully non-local description,
with the correlation energy being expressed in terms of the electron density d using a non-local
kernel q as [1]

�corr =
1
2

∬
d(AAA)q(AAA, AAA′)d(AAA′) d3AAA d3AAA′ . (2.44)

One of the most influential functionals was vdW-DF (and later vdW-DF2) [50, 51], which is based
on the assumption that the kernel q is a function of the distance |AAA − AAA′|, which essentially makes it
semi-local, the electron density and its gradient only, being proportional to the exchange-correlation
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density of a gradient-corrected LDA functional.

Simpler functional forms were proposed by Vydrov and Van Voorhis (VV09 and VV10) by ne-
glecting some physical constraints on the correlation kernel [52, 53]. In particular, VV10 was
constructed to have a relatively simple form, given as

q(AAA, AAA′) = −3
26(AAA)6(AAA′) (6(AAA) + 6(AAA′)) , (2.45)

where 6(AAA) is a function of the local density only. A semi-local polarizability expression can be
obtained directly from the VV10 functional [54], as it is a functional of the local electron density

U(AAA, 8D) = d(AAA)
4c
3 d(AAA) + �

���∇∇∇d(AAA)d(AAA)

���4 + D2
. (2.46)

This semi-local polarizability expression from theVV10 functional was used byHermann et al. [55]
to extend the many-body dispersion approach, where NL stands for non-local. It is interesting to
note that even though the VV10 functional provides a non-local expression for the correlation
energy, the response function of MBD–NL constructed from it is still only semi-local.

The semi-local polarizability of a few model systems was obtained using the Dalgarno-Lewis
perturbation theory [56] by Orttung [57, 58], which was also recently revisited [59]. While the
underlying theory of theDalgarno-Lewis approach is quite complex, for our purpose, it is essentially
enough to understand that it allows one to express the perturbed wavefunction in the form [60]

Ψ(1) (AAA) = '(A)Ψ(0) (AAA) , (2.47)

and, consequently, the polarizability becomes semi-local

U(AAA) = '(A) |Ψ(0) (AAA) |2 . (2.48)

While this flavor of perturbation theory can deliver semi-local functions that give the exact polar-
izability when integrated, they still suffer from consistency issues, as explained below.
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2.2.5 Non-Local Theory

As discussed above, using a semi-local theory for polarizability is a commonly used approach,
despite the fact that it was shown in the 1970s by Sipe [61] that a semi-local polarizability
description cannot be completely correct from both a quantum-mechanical and an electrodynamical
points of view. A fully consistent theory should be built on a two-point response function, defined
by Eq. (2.42) together with the connection between the induced charge density and the induced
polarization density

Xd(AAA) = −∇∇∇ · X%%%(AAA) . (2.49)

The theory of non-local polarizability was later elaborated by Hunt, proving a number of important
properties of this quantity: i) it contains all static multipole polarizabilities; ii) the dispersion
energy between two interacting species can be expressed via this quantity; iii) in general, the
non-local polarizability provides a convenient framework for describing molecular properties such
as screening factors or Raman spectra [62–64]. Despite the theoretical usefulness of this quantity,
it has only been explicitly analyzed for the homogeneous electron gas [65], and no practical
calculations have been done within this framework until now.

Although non-local polarizability was not yet used in electronic structure calculations, non-local
susceptibility is constructed as an intermediate quantity in methods such as RPA or SAPT. An
interesting approach to obtaining the polarizability of atoms-in-molecules is to first construct
the non-local susceptibility and then condense this quantity to atoms. While the polarizability
obtained in such a way is not non-local on the response function level, this method offers accurate
prediction due to the non-locality of the underlying quantities. Two examples of this approach are
the ACKSl2 [66] and ISA–POL [67] methods, both starting with a sum-over-states expression
of the non-local susceptibility j, then projecting this quantity to atomic values using a numerical
basis set.

2.2.6 Electronic Structure Methods

In the stairway of the polarizability methods shown in Fig. 2.1, electronic structure calculations are
represented as a handlebar, providing a stable reference for each step along the path. In principle,

24



2.2. STAIRWAY OF POLARIZABILITY METHODS

almost any electronic structure method can be used to calculate polarizability, as the calculation
only requires an additional one-electron integral due to a perturbing operator acting only on a single
electron coordinate[see Eqs. (2.50)-(2.51)]. Moreover, since the computational cost of two-electron
integrals dominates the cost of DFT and wavefunction-based methods, adding an external field to a
molecule has only a small effect on the runtime of such calculations. Notable exceptions to this rule
are zero differential overlap or near-linear scaling quantum chemical methods, since most of the
two-electron integrals are neglected in these approaches, meaning that an additional one-electron
integral can significantly increase costs.

Polarizability, by definition, can be expressed as the first derivative of a multipole moment or the
second derivative of the energy with respect to an external perturbing electric field (the energy is
denoted* here).

U8 9 =
mb8

m� 9
= −2

m2*

m�8m� 9
. (2.50)

Equation (2.50) can lend itself to a simple implementation for most electronic structure codes, since
the Hamiltonian perturbed by a homogeneous field of strength |� | is just

H = H0 + |� |
∑
8

Â8 , (2.51)

with a sum over the index of the electrons 8, meaning that only the position operator, which is a
one-electron operator, needs to be evaluated in addition [68]. Bearing inmind that the wavefunction
in quantum chemistry calculation is normalized to the total number of electrons, the expectation
value of

∑
8 Â8 directly gives the total dipole moment.

The results of this finite-field approach depend on a proper choice of the field strength |� |: It needs
to be small enough so that perturbation theory is valid, but large enough so that differentiation can
be carried out with low numerical error. Away to achieve controlled numerical error is the Romberg
procedure, which iteratively refines the numerical grid applied with a trapezoidal scheme [69]. In
principle, multipolar polarizabilities can also be evaluated in such a manner by calculating the
derivative of the induced multipole moment with the corresponding gradient of the field (or taking
the corresponding energy derivative), in which case the constant prefactors are found from the
so-called Buckingham expansion [70].
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Apart from setting an appropriate field strength, there are two practical difficulties with finite
field calculations. For systems having nonzero total angular momentum, the polarizabilities of
the electronic microstates can be different (see Fig. 2.2) since an applied external field can pick
“preferred” electron configurations, giving distinct results for different Cartesian directions. In
particular, the polarizability tensors of free atoms contained in the NIST database suffer from
non-physical symmetry breaking due to this effect [71].

Figure 2.2: Illustration of the arbitrariness of the oxygen microstate energies in an oriented external
electric field [44].

A second issue arises when considering the convergence of polarizability with respect to the basis
set size. The observation that polarizability converges very slowly with respect to the size of the
basis set was one of the main reasons behind the development of modern basis sets, resulting in the
widely used Dunning and Sadlej basis functions [72, 73]. The slow convergence is illustrated for
the case of the nitrogen atom in Fig. 2.3. In making this graph, perturbations by external electric
fields were added to the core Hamiltonian (an option in the PySCF code [74]) asH ′ = −�UAU and
H ′ = 0.5�UV (3I2−A2), respectively, for the dipole and quadrupole polarizabilities. Polarizabilities
were extracted from the numerical derivatives of energy with respect to the strength of applied
electric fields (chosen to be 0.001 a.u.). Dunning’s aug-cc-pVXZ basis sets were used, singly or
doubly augmented (referred to as “single d” or “double d” in the figure), together with a coupled
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cluster UCCSD(T) calculation.
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Figure 2.3: Prediction error
in the dipole and quadrupole
polarizabilities of the quadru-
plet nitrogen atom with re-
spect to the basis set, calcu-
lated using UCCSD(T).

Due to these theoretical and practical difficulties, finite-field calculations are rarely used for large
systems. The alternative approach, nowadays implemented in many ab initio codes, is to evaluate
the perturbative expressions on the ansatz for the electronic wavefunction. The two most common
methods are the coupled-perturbed Hartree-Fock (CPHF) and the density functional perturbation
theory (DFPT), where the perturbation is taken on the Hartree-Fock or Kohn-Sham equations,
respectively. In both methods, the perturbation is included via a perturbation parameter on the
molecular orbitals themselves. A complete account for theCPHF equations would require a tedious
treatment of both the unperturbed and perturbed theory [75, 76], so it is omitted from this thesis.
Recently, such perturbative methods have been extended to multideterminant and multireference
methods, enabling accurate calculations for both static and dynamic correlations.

Modern machine learning (ML) methods are also becoming more popular for evaluating response
properties. Wilkins et al. [77] have used an ML algorithm - named AlphaML - to learn the
connection between dipole polarizability and molecular geometry. Their model was trained on
7000 geometries from the QM7b dataset [78], with polarizability calculated using the linear
response coupled cluster (LR–CCSD) method. The resulting AlphaML model can predict the
polarizability tensor at a nominal cost, with an accuracy comparable to a DFT calculation. Due to
the difficulty in extrapolating with ML models, AlphaML is only accurate within the range of the
training dataset.
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2.3 Polarizability of Model Systems

A general perturbative expression for the multipolar polarizability was already introduced in
Eq. (2.15), showing that the exact evaluation of the polarizability requires knowledge of the
elements of the transient multipole moment matrix (between the ground and any excited state, for
the polarizability of the ground state). This is infeasible for most real atoms and molecules and still
challenging even for quantum-mechanical models. Consequently, the few exactly solvable systems
play an important role both in our intuitive understanding of polarizability and in providing a basis
for practical simulation methods.

The description of atomic spectra was one of the main driving forces in the development of
quantum theory. The Stark effect, as the shift of atomic energy levels in an external electric field,
was described in 1914 [79]. Curiously, even after the development of quantum mechanics, the
description of the Stark effect even for hydrogen atom posed significant challenges, first solved by
Waller [80], using ideas later formalized by Dalgarno [56] (called Dalgarno-Lewis perturbation
theory in modern articles).

The source of the mathematical difficulty is the infinite nature of the summation in Eq. (2.15),
which not only contains (an infinite number of) bound states, but must also account for continuum
contributions. Ground-to-continuum-state transitions are not negligible, contributing 18.6% to the
dipole, 64.4% to the quadrupole, and more than 91% to the octupole polarizability to hydrogen-like
atoms [81]. Due to this difficulty, a two-level model of the hydrogen atom is still used for analytical
derivations [82], even if the first-order correction to the hydrogen atom can be obtained analytically.

Away of formalizing the two-level approximation is the so-calledUnsøld approximation [19, 83, 84]
often used to understand qualitative trends of molecular polarizability. Within this approach,
polarizability is written using an average excitationΔ� , most often treated as a fitting parameter [85]

UUU =
2
Δ�

∞∑
=≠0
〈Ψ0 | ˆ̀ |Ψ=〉 ⊗ 〈Ψ= | ˆ̀ |Ψ0〉 . (2.52)

The modeling of polarization of materials using an effective charged harmonic model also predated
quantum mechanics [86]. Moreover, this classical Drude model is still used in polarizable molec-
ular force field simulations [87, 88], with the quantum-mechanical analogue, the quantum Drude
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oscillator (QDO), which is both an attractive analytical model for polarizability and a convenient
Hamiltonian for Monte Carlo simulations [89, 90]. The quantum mechanics of the QDO model
will be presented in Sect. 3.2.1. However, two conceptual observations can already be noted here.
First, because of selection rules, the polarizabilities of the QDOmodel contain just a finite number
of contributions (only the first excited state for dipole polarizability), so energies in an external
field are analytically obtainable. This also means that setting the average excitation of Eq. (2.52)
to Δ� = �1 − �0 is exact for this model. Second, not only the energies, but also the wavefunction
can be analytically written for external electric fields, making the QDO model a convenient choice
for analytical derivations for interactions of atoms/molecules in a field [91].

Yet another model for which polarizability can be analytically obtained is the particle in a box,
since the system has only bound states and the wavefunctions are mathematically convenient to
work with. The dipole polarizability of the =th state (the ground state is = = 1) of the 1D particle
in a box of length � is [19, 92]

U= =
`@2

ℏ2
(15 − =2c2)

12=4c4 �4 . (2.53)

The particle in a box is a model system that is rapidly gaining popularity, due to the practical
importance of quantum dots and advances in the theory of confined systems in general [93–95],
but it has not yet been widely used as a polarizability model, especially in excited states.

Polarizability, the quantity playing a central role in this Thesis, was introduced in this Chapter. It
was shown that multipole moments and multipolar polarizabilities provide a natural backbone for
the discussion of intermolecular interactions. The “traditional” theory of long-range interactions
considers these quantities without any spatial extent, which is a consequence of the approximations
behind the multipole expansion. It was also seen, however, that different methods approximate
the non-local nature of polarizability to different levels, and fully non-local response functions can
be used to approximate correlation energies without needing to resort either to range separation
or multipole expansion. The following chapters will show how understanding the properties of
molecular and atomic polarizabilities, together with the study of model systems, can lead to a fully
non-local theory, eventually paving the way to a general polarizability density functional.
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3. Polarizability ofModel SystemsandAtoms

Section 3.1 is based on the paper
Szabó, P. et al., PRL 2022, 128, 070602;

Section 3.2 is based on
Góger, S. et al., JPCL 2023, 14, 6217–6223,

containing parts reproduced as permitted by the Creative Commons license.

This chapter is devoted to a consideration of systems in which qualitative as well as quantitative
models for polarizability can be well tested. Due to the experimental and theoretical difficulties
associated with evaluating the polarizability, such systems must be simple. As far as exact ana-
lytical results are concerned, only select model Hamiltonians are solvable, including the harmonic
oscillator, the hydrogen atom, the two-state system, and the confined particle. Free atoms provide
useful tests for polarizability models due to the availability of accurate numerical and experimental
data and the convenient fact that the charge density is symmetrically centered around a single origin,
making the discussions concerning gauge freedom, that is, a degree of arbitrariness regarding the
choice of the coordinate system simpler.

A detailed discussion of analytical results for model systems is not fully presented here as they
can be found in standard textbooks [96] and the Supplemental Material in [19]. Instead, this
Chapter focuses on two findings: a correlation between polarizability and an intrinsic length scale
of quantum mechanical systems and an efficient recipe for representing atomic response functions
with a harmonic oscillator model.

Sect. 3.1 builds heavily on [19] and Sect. 3.2 contains an adapted version of the publication [44] –
To this latter work, I have contributed by performing ab initio calculations, visualizing the results,
and developing the theory of the polarization potential to explain the findings. The derivation of
the correlated descriptor for atomic size was done with the help of Dr. Matteo Gori.
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3.1 Polarizability and System Size in Quantum Mechanics

The dipole polarizability determines the strength of the electric response of a system of charged
particles to applied electric fields as well as dispersion/polarization interactions between atoms or
molecules [4, 96, 97], playing an important role in the interpretation of some experiments [98–
102]. Efficient models for polarizability are useful to predictively describe various phenomena in
physics, chemistry, and biology. Moreover, a detailed understanding of quantum-mechanical (QM)
polarization mechanisms is desirable for developing a microscopic picture of intrinsic vacuum
response properties [103–105].

In general, the dipole polarizability is a second-rank tensor determining the dipole moment induced
by an applied electric field: d = UUUE. For anisotropic systems, the polarizability tensor can be
diagonalized using the principal axes, whereas in the case of isotropic systems it effectively reduces
to a scalar: U88 = U = 1

3 TrUUU. For a QM system in its ground state, the dipole polarizability can be
evaluated via the Rayleigh-Schrödinger perturbation theory [96]

UUU = 2
∞∑
=≠0

〈R0 |d̂|R=〉 ⊗ 〈R= |d̂|R0〉
�= − �0

, (3.1)

where ⊗ indicates the dyadic vector product and the sum goes over all excited states. This formula
describes transient or fluctuating electric dipoles as the matrix elements of the dipole operator
d̂ =

∑
9 d̂ 9 =

∑
9 @ 9 r̂ 9 , where @ 9 and r̂ 9 are the charge and position operator of the 9 th particle,

respectively. For an accurate calculation of UUU, all bound and continuum states must be taken into
account. Thus, Eq. (3.1), while being exact, is difficult to evaluate in practice. Therefore, various
approximations [83, 106–108] have been developed for a more efficient evaluation of Eq. (3.1). In
addition to their computational advantage, approximate models often provide a deeper insight into
the polarizability and its relation to other physical observables.

According to Eq. (3.1), the polarizability should be related to a certain characteristic length for
a given QM system. This has led to the proposition of a number of scaling laws with respect to
different effective system sizes:

U ∝ '3
cl , U ∝ '

4
conf , U ∝ '

7
vdW . (3.2)
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The first relation stems from the classical formula, U = (4cn0)'3
cl , where n0 is the vacuum

permittivity and 'cl is the radius of a conducting spherical shell [109] or a hard sphere with
uniform electron density and a positive point charge at its center [110]. This formula delivers
the most commonly accepted scaling law, which is used in practice to describe the polarizability
of atoms in molecules and materials [35, 40, 111–113]. The second relation in Eq. (3.2) holds
for confined quantum systems of length 'conf , as was derived by Fowler [92]. This relation was
observed for semiconductor nanocrystals by using terahertz time-domain spectroscopy [98, 99].
The third scaling law, U ∝ '7

vdW , connecting the atomic polarizability and van der Waals (vdW)
radius, was found [28, 114] by studying the balance between exchange and correlation forces for
two interacting quantum Drude oscillators (QDO) [115–117]. Subsequently, the approach of [28]
has been employed to improve effective models for vdW interactions [118, 119].

All three distinct scaling laws can be represented as

U = (4cn0)'3
? ('?/'A?)? , (3.3)

where ('?/'A?)? is a correction to the classical formula. The renormalization length 'A? depends on
the choice of the effective system size '? ∈ {'cl, 'conf , 'vdW}, which corresponds to ? = {0, 1, 4}.
Whereas 'A1 depends on the system parameters [92], 'A4 was found [28, 114] to be the same for all
atoms. However, the vdW radius is an interacting radius rather than an effective system size, and
its accurate evaluation independent of polarizability is difficult [28]. Therefore, it is desirable to
establish a general relation of U to a concrete effective size of any given QM system, such as the
scaling law for confined systems with a defined confinement radius [92]. Since Eq. (3.3) gives the
right units of U for any value of ?, the form of this general relation is not obvious a priori.

In Ref. [19], we have shown that for many distinct QM systems, the principal-axis components of
the polarizability tensor in Eq. (3.1) are given by a unified expression

U88 = �8 (4`@2/ℏ2)!4
8 , (3.4)

where the constant �8 depends on the properties of the quantum particle with mass ` and charge
@. The characteristic length !8 measures the spatial spread of the ground-state wave function Ψ0

with respect to its center of mass corresponding to the nuclear position in the case of atoms. The
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Euclidean L2-norm of the position vector, (r − R), is defined for a QM system described by its
ground-state wavefunction as

!8 =

√∫
+

(A8 − '8)2 |Ψ0(r) |2 drN , (3.5)

where # is the spatial dimension of the system.

Equation (3.4), connecting U88 with the characteristic length !8 along the 8th principal axis, makes
our approach applicable to QM systems of any spatial dimensionality. Moreover, for atom-like
systems with a well-defined positively charged center of mass, the dimensionless constant �8 turns
out to be close to unity. Equation (3.4) scales as the relation obtained by Fowler [92] for confined
systems using an exact derivation of the polarizability or its Unsøld [83] estimates. However, the
size of such confined systems was imposed as a classical parameter, which cannot be defined for
QM systems in free space. Using our choice of the characteristic length – a QM generalization
of the conventional Euclidean L2-norm – it is shown here that one can properly describe the
polarizability of any atom-like QM system.

3.1.1 Single Electron Models

Many objects in classical mechanics have well-defined boundaries, making the definition of size
descriptors such as volume or area trivial. This is not true in quantum mechanics: many model
systems have wavefunctions that decrease asymptotically only at infinity. Moreover, the uncertainty
principle also complicates the discussion. The naturalway to proceed is toworkwith the expectation
values of the position operator. In particular, the second moment, e.g. ÂAA2 is a convenient choice, for
two reasons. First, this operator becomes a sum of components in Cartesian coordinates, making
it possible to treat the 8th component of a #-dimensional system independently as

!8 =

(∫
+

A2
8 d(AAA) d#AAA

)0.5
, (3.6)

with the assumption that there is a single center of charge at the origin. The second reason for this
choice is that the perturbative expression for dipole polarizability (Eq. (2.14)) contains the square
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of the matrix elements of the dipole operator between two states (called transition dipole matrix
elements), hinting that using either dipole matrix elements or their squares might simplify later
derivations.

The derivation of Eq. (3.4) can be found in [19], with a detailed consideration of somemodel systems
in the Supplementary Material. The central idea is to use the Unsøld approximation [83, 106], that
is, to treat the energy denominator in the perturbative expression for polarizability as an effective
single value Δ� . Written for the 88th component of the (dipole) polarizability tensor, this means

U88 = 2@2
∞∑
=>0

〈
Ψ0 |Â8 |Ψ=

〉 〈
Ψ= |Â8 |Ψ0

〉
�= − �0

= (2@2/Δ�8)
∞∑
=>0

〈
Ψ0 |Â8 |Ψ=

〉 〈
Ψ= |Â8 |Ψ0

〉
. (3.7)

The summation in Eq. (3.7) can be rewritten using the closure relation
∑∞
==0 |Ψ=〉〈Ψ= | = 1:

〈Ψ0 |Â8
∞∑
=>0

(
|Ψ=〉〈Ψ= |

)
Â8 |Ψ0〉 = 〈Ψ0 |Â8

(
1−|Ψ0〉〈Ψ0 |

)
Â8 |Ψ0〉 = 〈0|A2

8 |0〉−〈0|A8 |0〉2 = (ΔA8)2, (3.8)

delivering an intermediate expression

U88 =
2@2

Δ�
(ΔA8)2 . (3.9)

The issue of scaling the average excitation energy Δ� with geometric expectation values can be
solved similarly, starting from the Thomas-Reiche-Kuhn (TRK) sum rule [120]

2`
ℏ2

∞∑
=>0
(�= − �0) 〈Ψ0 |Â8 |Ψ=〉2 = 1 , (3.10)

leading to a different average excitation energy (Δ�̃8)−1 = (2`/ℏ2) (ΔA8)2. Assuming a transferable
proportionality between the TRK and the Unsøld average excitation energy, the final expression for
polarizability is
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U88 =
4@2

ℏ2 (ΔA8)
4 . (3.11)

Equation (3.11) implies that the polarizability is proportional to the second power of the variance
in the position. Others have already obtained a similar scaling result under different approxima-
tions [92, 106, 121], resulting in slightly different proportionality constants. However, it should be
kept in mind that the average energy approximation was used in two different sum rules, with no
clear connection between the two average energies; therefore, instead of postulating the value of
the proportionality constant, we have used an undetermined factor � in [19]. Finally, if we only
consider model systems with symmetric ground-state wavefunctions (which is true for the most
common model Hamiltonians), we can appreciate that the variance (ΔA8)2 is equal to the square of
the characteristic length in Eq. (3.6) due to the vanishing expectation value of Â8, giving the final
concise result

U88 =
4@2

ℏ2 �!
4
8 . (3.12)

The proportionality constant � was empirically determined for select model systems by evaluating
both !8 and U and taking their ratio, with the detailed derivations found in the SI of [19]. The model
systems include Hamiltonians with bound and unbound spectra, as well as ones having different
dipole matrix selection rules. So far, it is unclear what the magnitude of the � constant implies
about the system. An interesting observation is that � = 1 for the ground state of the quantum
Drude oscillator. The relationship for the =th excited state is

[U=]88 =
1

(2=8 + 1)2
4`@2

ℏ2 !4
=,8 , !=,8 = f8

√
2=8 + 1 , (= = 0 ⇔ Ψ0) . (3.13)

Another important model system studied was the particle in a box, for which the results are

[U=]88 =
3(15 − =2

8
c2)

(=2
8
c2 − 6)2

4`@2

ℏ2 !4
=,8 , !=,8 = �8

√
=2
8
c2 − 6

2c=8
√

3
, (= = 1 ⇔ Ψ0) . (3.14)

The particle in a box Hamiltonian is useful for modeling the properties of quantum dots [94], so
relationships such as Eq. (3.14) connecting geometrical properties to observable response functions
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may be useful in parametrizing quantitative models for such systems.
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Figure 3.1: Comparing two implemen-
tations of the Tkatchenko-Scheffler (TS)
method [35]: (a) the conventional TS
method based on Eq. (3.15) and (b) the
modified TS method based on Eq. (3.16).
The corresponding molecular polarizabili-
ties UTS

mol are shown versus the reference val-
ues Uref calculated by using density func-
tional perturbation theory (DFPT) with the
hybrid PBE0 functional [19]. RE and RAE
stand for “relative error” and “relative ab-
solute error”, respectively, as defined in the
text below. The illustration (right) shows
the scaling law of the polarizability of atoms
within the molecule.

Another manifestation of the scaling law can be found in the defining the polarizability of atoms in
molecules. As elaborated later in Sect. 4.2, polarizability of molecules can be generally constructed
as a sum of atomic polarizabilities, as also done in the Tkatchenko-Scheffler (TS) method [35]

UTS
mol =

∑
=
Ueff
= =

∑
=
Ufree
=

(
+eff
= /+ free

=

)
, (3.15)

with the scaling law implying that the re-scaling of the free atomic polarizability should be done
instead as

UTS
mol =

∑
=
Ueff
= =

∑
=
Ufree
= (!eff

= /!free
= )4 . (3.16)

A calculation based onEq. (3.16)was performed using theTABS dataset [122] containing optimized
geometries of 1641 small organic molecules. Reference molecular polarizability calculations were
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performed with density functional perturbation theory (DFPT) (as implemented in the FHI-aims
code [123]), employing the hybrid PBE0 functional and tight numerical basis set for all systems.
Molecular volumes and characteristic length-scaledwere calculated from the total electronic density
based on Hirshfeld partitioning [124], that is, the volume is obtained as

+ =

∫
d3AAAF 9 (AAA)d(AAA)A3 , (3.17)

and ! by taking the second power of A instead of the third. In Eq. (3.17), the Hirshfeld weights
F 9 (AAA) are obtained from Hirshfeld ratios

F 9 (AAA) =
d 9 (AAA)∑
: d: (AAA)

, (3.18)

where
∑
: d: (AAA) is the density of a non-interacting system having the same atoms in the same

positions, also called “promolecular” density.

The Hirshfeld volumes [124] for the same geometries as found in the TABS dataset were calculated
using the PBE functional. (Fig. 3.1) shows that using Eq. (3.16) instead of Eq. (3.15) the average
signed relative error 〈RE〉 = 1

=

∑
8 (U8ref − U

8
TS)/U

8
ref drops from 8.29% to 0.09%. The practically

vanishing systematic deviation and the decrease in the average absolute relative error 〈RAE〉 =
1
=

∑
8 (
���U8ref − U

8
TS

���)/U8ref from 10.5% to 6.25% confirm the applicability of the scaling law used.

Finally, it should be noted that the authors of Ref. [25] also found that the molecular dipole
polarizabilities based on the TABS database [122] seem to scale as U ∝ +4/3. However, their
empirical finding was reported without giving any fundamental reason for this non-linear relation.
The finding that the four-dimensional scaling relation can be used to efficiently predict molecular
polarizabilities from atomic data underlines the fundamental nature of this unraveled scaling law.

3.1.2 Effect of Electron Correlation in Atomic Systems

The four-dimensional scaling lawbetween the characteristic length and the polarizability of quantum
mechanical models discussed above was derived starting from considering one-electron systems.
All presented formulas rely on single-electron expectation values, whereas a fully physically correct
description of quantum mechanical response should be based on response functions depending on
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two spatial coordinates [2]. Generally, electron correlation effects cannot be recast into one-electron
operators, requiring the discussion to be formulated using two-electron expectation values [125].
Moreover, the derivation relied on multiple approximations of the sum rules, introducing average
values that are not known even for single-electron systems.

In Ref. [19], we have treated many-electron atoms by generalizing the proportionality constant �
of Eq. (3.12) to be shell-dependent which, in part, is due to the shell-dependence of the electron
correlation. The formula proposed for the (isotropic) atomic polarizability is

U =
4<442

ℏ2

occ∑
:

�:

[:

!4
:

#:
≈ �̃

(
4<442

ℏ2

) occ∑
:

!4
:

[:#:
, (3.19)

where the sum runs over occupied orbitals with degenerate states treated together, !: is obtained
by Eq. (3.5) for the :th orbital, and #: is its occupation number stemming from the many-electron
version of the TRK sum-rule. Then, [: are orbital-dependent factors required for all atoms starting
from Li ([He

:
= 1), empirically found to be [: = =ℓ:#

[1+(−1)ℓ ]/2
:

, where ℓ and =: are, respectively, the
orbital and principal quantum numbers of the :th orbital.

In this section, a derivation directly accounting for electron correlation effects for many-electron
atoms by construction is presented following the ideas of [125]. For reasons that should become
clear after the derivation, only the case of < = 0 was elaborated in [125], with the general formulas
appearing here for the first time.

This derivation relies on the fact that (ℓ<)th spherical polarizability is written as the shift in the
(ℓ<)th multipole of the charge density due to an ℓ′<′ perturbing field. The first-order change in
the electron density can be written by minimizing an auxiliary Lagrangian, giving the connection
between the perturbation and the corresponding response of the system under consideration.

Calculating the 2;-pole polarizability within perturbation theory is equivalent in obtaining the
expectation value

U;,<,; ′,<′ = −2 〈Ψ0 |&̂;,< |j; ′,<′〉 , (3.20)

where &̂;,< is the ;th multipole operator and j; is the first order change of the ground-state
wavefunction Ψ0, obtained from Rayleigh-Schrödinger perturbation theory as
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(Ĥ0 − �0)j; ′,<′ + +̂; ′,<′Ψ0 = 0 . (3.21)

This approach is equivalent to minimizing the Lagrangian

! [|j; ′<′〉] = 〈j; ′<′ |Ĥ0 − �0 |j; ′<′〉 + 〈j; ′<′ |+̂; ′<′ |Ψ0〉 + 〈Ψ0 |+̂; ′<′ |j; ′<′〉 . (3.22)

For the first order correction in the wavefunction, a variational multiplicative ansatz is proposed of
the form

j; ′<′ = _; ′,<′+; ′,<′Ψ0 . (3.23)

Then, the multiplicative constant is found from Euler’s equation for the functional to be

m! (_; ′<′)
m_; ′<′

= 0 ⇒ _; ′<′ = −
〈Ψ0 |‖&̂; ′<′‖2 |Ψ0〉

〈Ψ0 |&̂; ′<′ (�̂0 − �0)&̂; ′<′ |Ψ0〉
, (3.24)

where

‖&̂; ′<′‖2 = &̂†; ′<′&̂; ′<′ =
#∑
8 9=1
(−1)<′ (A8A 9 );

′
.; ′(−<′) (\8, q8).; ′<′ (\ 9 , q 9 ) |r1, ..., r#〉〈r1, ..., r# | =

=

[
#∑
8=1
(A8)2;

′
2; ′∑
!=1
(−1)<′�!0

; ′0; ′0�
!0
; ′<′; ′(−<′).!0(\8, q8)

]
.

(3.25)

Finally, the polarizability is given as

U;<,; ′<′ =
16c

2;′ + 1
〈Ψ0 | (&̂; ′<′)2 |Ψ0〉 〈Ψ0 |&̂2

; ′<′ |Ψ0〉
〈Ψ0 |&̂; ′<′ (�̂0 − �0)&̂; ′<′ |Ψ0〉

. (3.26)

In the next step, the denominator is converted to
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〈&̂†
; ′<′ (Ĥ0 − �0)&̂; ′<′〉Ψ0 =

1
2
〈�̂〉Ψ0 , (3.27)

with

�̂ =

#∑
8=1

ℏ2

2"8

(∇∇∇r8 &̂
†
; ′<′) · (∇∇∇r8 &̂; ′<′) . (3.28)

This gradient can be evaluated for an arbitrary < as

∇∇∇r8&̂; ′<′ = /84A ;−1
8

[
;.;< (\8, q8)eA+

(
< ctg(\8).;< (\8, q8)+

+ exp(−8q8)
√
Γ(1 + ; − <)Γ(2 + ; + <)√
Γ(; − <)Γ(1 + ; + <)

.; (<+1) (\8, q8)
)
e\+

+ 8< csc(\8).;< (\8, q8)eq

]
|A1, \1, q1, ..., A1, \# , q#〉〈A1, \1, q1, ..., A# , \# , q# |

(3.29)

and

∇∇∇r8&̂
†
; ′<′ = /84A

;−1
8

[
;. ∗;< (\8, q8)eA−

(
< ctg(\8).;< (\8, q8)+

+ exp(−8q8)
√
Γ(2 + ; − <)Γ(1 + ; + <)√
Γ(1 + ; − <)Γ(; + <)

. ∗
; (<−1) (\8, q8)

)
e\+

− 8 < csc(\8). ∗;< (\8, q8)eq

]
|A1, \1, q1, ..., A1, \# , q#〉〈A1, \1, q1, ..., A# , \# , q# | .

(3.30)

The previous equations yield to

�̂<′ =

#∑
8=1

/2
8
42ℏ2A2;−2

8

"8

[
(;′2 + <′2 csc2(\8))

2; ′∑
!=0
C!0
; ′0; ′0C

!0
; ′<′; ′(−<′).!0(\8, q8)

]
. (3.31)

For a closed atom, the value of U is independent of<, therefore only the case of< = 0was presented
in [125]. Since open-shell atoms generally do have non-zero magnetic quantum numbers, the full
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equations above are not practically feasible to be evaluated in quantum chemical codes. The < = 0
case, however, gives a workable formula

�̂0 = � =

(
4c

2; + 1

)2 #∑
8=1

A2;−2
8

(
;2.2

;,0(\8) + ; (; + 1) |.;,1(\8, q8) |2
)
. (3.32)

Combining Eqs. (3.26) and (3.32) results in the following expression for the multipole polarizability
of the ;th rank

U; =
4〈'2;〉2

(2; + 1)2;〈A2;−2〉
, (3.33)

with

〈A=〉 = 〈0|Â= |0〉 and 〈'2=〉 = 4c

〈
0

������ #4∑
8, 9=1

A=8 .;,0(\8)A=9.;,0(\ 9 )

������ 0
〉
. (3.34)

For the specific case of dipolar response (ℓ=1) this gives

U =
4〈'2〉2

9#4
, (3.35)

which, compared to Eq. (3.12), differs in the definition of the size operator ! B ', which now
is a two-electron operator able to describe electron correlation contributions to polarizability. A
second difference between the two formulas is the pre-factor, as the constant in [19] was chosen to
be unity for the harmonic oscillator, while Eq. (3.35) is exact for the hydrogen atom. Nevertheless,
the four-dimensional scaling of the dipole polarizability is also confirmed using the correlated size
descriptor outlined here.

The ground state wavefunction of free atoms is spherically symmetric, belonging to the SO(3)
point group, which means that if the orbitals are properly symmetrized in ab initio calculations,
only integrals of the form 〈0|A8A 9 |0〉 must be evaluated. Having access to the two-electron reduced
density matrix Γ`a

fW
defined from the two-electron reduced density function (the trace of all but two

electron coordinates of the form Ψ∗Ψ) in the basis of molecular orbitals q as
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Γ(A1, A
′
1, A2, A

′
2) =

#!
(# − 2)!

∫
dA3... dA#Ψ∗(A1, A2, ..., A# )Ψ(A′1, A

′
2, ..., A# ) ; (3.36)

Γ`a
fW
=

∫
dA1 dA′1 dA2 dA′2q` (A1)qf (A2)Γ(A1, A

′
1, A2, A

′
2)qa (A

′
1)qW (A

′
2) , (3.37)

such matrix elements are written (for 8 ≠ 9) as

〈0|A8A 9 |0〉 =
∑̀
a

fW

Γ`a
fW
A`aAfW , (3.38)

with A`a being the matrix representation of the single-electron operator Â in the basis of molecular
orbitals q

A`a =

∫
q∗` (A1)AAA1qa (A1) dA1 , (3.39)

where the sum runs over occupied orbitals with degenerate states treated together, !: is obtained
by Eq. (3.5) for the :th orbital, and #: is its occupation number stemming from the many-electron
version of the TRK sum-rule. Then, [: are orbital-dependent factors required for all atoms starting
from Li ([He

:
= 1), empirically found to be [: = =ℓ:#

[1+(−1)ℓ ]/2
:

, where ℓ and =: are, respectively, the
orbital and principal quantum numbers of the :th orbital.

Equations (3.38)–(3.39) were implemented in PySCF [74], where a native option of symmetrizing
all integrals by SO(3) group is possible. The values of the uncorrelated (ΔA)2 as well as 〈'2〉
calculated withUCISD using the basis set aug-cc-pVTZ for noble gas atoms are shown in Table 3.1

Atom (ΔA2) 〈'2〉 (ΔA2)2/〈'2〉2 =

He 2.40 2.27 1.12 1
Ne 9.61 5.76 2.78 2
Ar 26.1 13.9 3.53 3
Kr 39.7 20.1 3.90 4

Table 3.1: Correlated and uncorrelated atomic "sizes" of noble gas atoms (in atomic units). The
ratio of the square of the sizes is also shown, which is close to the principal quantum number = of
the valence shell in all cases.

42



3.1. POLARIZABILITY AND SYSTEM SIZE IN QUANTUMMECHANICS

One can see in Table 3.1 that the difference between the correlated and the uncorrelated size
descriptor increases with the principal quantum number of the valence shells of the atoms. In
Ref. [19], the principal quantum number was taken into account by introducing the empirical factor
[, which is directly proportional to it. Remarkably, the ratio of the fourth powers of the two size
descriptors closely follows the principal quantum number of the valence shell of each atom. This
not only shows that electron correlation is a major factor in determining the [ parameter, but also
hints that electron correlation effects scale proportionally with dipole polarizability. Moreover, it
can be concluded that expressing the polarizability using a correlated descriptor of the size enables
a rigorous derivation of the connection between the [ parameter and the primary quantum number,
previously introduced empirically in [19].

Finally, it should be noted (as also noticed in [125]) that the variational derivation presented here
can compliment the perturbative Unsøld approach presented in Sect. 3.1.1 by giving an expression
for the average excitation energy. On the other hand, the constant � in Eq. (3.12) is calculated
by the ratio of the full polarizability and the approximate expression, so it accounts for all other
sources of errors, such as the choice of the variational ansatz and electrostatic screening effects.
However, since the correlated descriptor presented in this section is based on the 2-electron reduced
density matrix, it could, in principle, also be generalized for molecules, enabling us to define the
quantum mechanical sizes of molecules consistently with the four-dimensional scaling law of the
dipole polarizability.

In summary, we have established a formula for the dipole polarizability, U = � (4`@2/ℏ2)!4, valid
for QM systems of varying spatial dimension, symmetry, excitation state, and number of particles.
The universality of the !4 scaling for U is connected to the unified QM metric ! measuring
fluctuations in the position of the particles in terms of system parameters. On the contrary, the
dimensionless coefficient � reflects only the qualitative properties of the eigenvalue spectrum of
each system. The geometric scaling of the polarizability for a system in its ground state is solely
determined by the ground-state wavefunction, whereas the effect of excited states is encoded in
� only. Here, it was also shown using variational theory that the scaling law can be extended to
many-electron systems simply by expressing the QM size of the system using correlated descriptors.

Another interesting finding is that the polarizability expression is directly proportional to the
particle mass, which is opposite to the classical picture where the polarizability vanishes for infinite
particle mass. The derived four-dimensional formula has many practical applications. It can be
directly used to improve DFT-based methods for van der Waals interactions [35, 97], parametrize
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polarizable force fields [115–117], or efficiently calculate dynamic spectroscopic observables based
on the polarizability (i.e., Raman spectra and sum-frequency generation) [98–102]. All of these
applications are based on an efficient and accurate evaluation of the polarizability from ground-state
electron density, as enabled by our unified formula.

3.2 Quantum Drude Oscillators for Atomic Responses

The development of predictive model Hamiltonians that can describe various properties of realistic
molecules and materials is a cornerstone of modern physics [126] and chemistry [127]. Of these
model systems, the quantumDrude oscillator (QDO) is arguably the most powerful Hamiltonian for
accurate and efficient modeling of the atomic and molecular response [2, 87, 115–117, 126, 128–
130].

Despite the wide applicability of the coupled QDO model, its success in describing real atoms
remains fundamentally unexplained, and the optimal mapping between atoms and oscillators has
not been established. In [44], an optimized parametrization (OQDO) was developed where the
parameters are fixed by using only the well-known atomic dipolar response properties. For direct
comparison with the published results, this Chapter will differ from the rest of the thesis by not
using atomic units but explicitly writing out the ISQ format for electrostatic quantities.

3.2.1 Description of the QDO Formalism

Within the quantum Drude oscillator (QDO) model, the response of all valence electrons is rep-
resented by a single quasiparticle (drudon) with a negative charge −@ harmonically bound to a
positively charged pseudo-nucleus of charge @ with a characteristic frequency l, having a reduced
mass `. The Hamiltonian of a single QDO is given by the well-known harmonic oscillator [117]

Ĥ0 = −
ℏ2

2`
∇

2
r +

1
2
`l2r2 . (3.40)

The corresponding eigenvalues and eigenfunctions, respectively, are given by

�{=G=H=I} = ℏl

(
=G + =H + =I +

3
2

)
, �=G = ℏl

(
=G +

1
2

)
, =G = 0, 1, 2, ... (3.41)
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and

Ψ{=G=H=I} (r) = Ψ=G (G)Ψ=H (H)Ψ=I (I) , Ψ=G (G) =
1

√
2=G =G!

(
`l

cℏ

)1/4
4−

`lG2
2ℏ �=G

(√
`l

ℏ
G

)
,

(3.42)
where �= (I) = (−1)=4I2 3=

3I=
4−I

2 are the Hermite polynomials.

In order to describe electromagnetic interactions of a QDO with other species or external fields,
the drudon acquires a negative charge (−@) opposite to the charge @ of the related pseudo-nucleus
possessing an infinite mass. The introduction of electric charges completes the QDO parameter set
to {@, `, l}, making it different from the quantum harmonic oscillator (possessing just ` and l).

Within the QDO model [117] one obtains the following multipole polarizabilities

U; =

(
@2

`l2

) [
(2; − 1)!!

;

] (
ℏ

2`l

) ;−1
. (3.43)

For example, the first few polarizabilities as

U1 =
@2

`l2 , U2 =
3ℏ

4`l
U1 , U3 =

5ℏ2

4(`l)2
U1 (3.44)

and the first three dispersion coefficients (solely expressed in terms of the QDO parameters)

�6 =
3
4
ℏ @4

`2l3 �8 =
5ℏ
`l

�6 , �10 =
245ℏ2

8(`l)2
�6 , (3.45)

delivering the leading-order contributions to the dispersion energy, �disp = −
∑

==3,4,...
�2=/'2= .

In the presence of an external (uniform) electric field E, the QDO Hamiltonian modifies to

Ĥ = − ℏ
2

2`
∇

2
r +

1
2
`l2r2 − @ (r · E) , (3.46)

which can be straightforwardly diagonalized by means of the coordinate transformation (see
also [131]): r = r̃ + @E/`l2 . Consequently, the ground-state density acquires shifted coordi-
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nate

d(r) = d0(r) =
1

(
√

2cf)3
4
− r2

4f2 , d� (r) = d0(r̃) =
1

(
√

2cf)3
4
− (r−U1E/@)2

4f2 , f =

√
ℏ

2`l
. (3.47)

Substituting the above densities into Eq. (8) of the manuscript [44] leads to Eq. (8) there (Eq. (3.56)
in this thesis).

3.2.2 Optimized QDO Parametrization

The quantum Drude oscillator (QDO) is an efficient yet accurate coarse-grained approach that has
beenwidely used tomodel electronic and optical response properties of atoms andmolecules, aswell
as polarization and dispersion interactions between them. Three effective parameters (frequency,
mass, charge) fully characterize the QDO Hamiltonian and are adjusted to reproduce response
properties. However, the soaring success of coupled QDOs for many-atom systems remains
fundamentally unexplained and the optimal mapping between atoms/molecules and oscillators
has not been established. Here, we present an optimized parametrization (OQDO) where the
parameters are fixed by using only dipolar properties. For the periodic table of elements as well as
small molecules, our OQDO model accurately reproduces atomic (spatial) polarization potentials
and multipolar dispersion coefficients, elucidating the high promise of the model presented in the
development of next-generation quantum-mechanical force fields for (bio)molecular simulations.

As mentioned before, the development of predictive model Hamiltonians that can describe various
properties of realistic molecules and materials is a cornerstone of modern physics [126] and
chemistry [127]. The quantum Drude oscillator (QDO) is arguably the most powerful Hamiltonian
(see Sec. 3.2.1) for accurate and efficientmodeling of the atomic andmolecular response [2, 87, 115–
117, 126, 128–130].

Within the coarse-grained QDO model, the response of valence electrons is described via a quasi-
particle drudon with a negative charge −@ and mass `, harmonically bound to a positively charged
pseudonucleus of charge @ with a characteristic frequency l. The many-body extension of the
QDO model (the coupled QDO model) has been widely employed to study both molecules and
materials, including their electronic [39, 97] and optical [132] properties, polarization [133, 134],
dispersion [42, 128, 131, 133, 135–141], and exchange [28, 114, 142] interactions, aswell as awealth
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of non-additive field effects in quantum mechanics [141, 143] and quantum electrodynamics [131,
144].

Coupled QDOs are also extensively used in the development of van der Waals (vdW) density
functionals [35, 42, 145], quantum mechanical [117, 126] and polarizable force fields [146–150]
as well as recent machine learning force fields [151, 152]. Despite such a wide applicability of
the coupled QDO model, its success in describing real atoms remains fundamentally unexplained
and the optimal mapping between atoms and oscillators has not been established. In this Section,
which contains the publication [44], an optimized parametrization (OQDO) is developed where the
parameters are fixed using only the well-known atomic dipolar properties. Remarkably, OQDO
reproduces spatial atomic polarization potentials and atomic multipolar dispersion coefficients.
Our OQDO model for atoms and small molecules also paves the way for the development of
next-generation quantum-mechanical force fields for (bio)molecular simulations.

The three parameters {@, `, l} fully define the QDO, and three atomic response properties could
be chosen to fix them, which means that the choice of QDO parameters is not unique. In addition,
allQDO response properties – multipolar polarizabilities and dispersion coefficients – are uniquely
fixed by the three parameters via closed-form relations [117]. The static dipole polarizability
of a QDO, U1 = @2/`l2, conveniently combines all three parameters, and it is natural to set
this expression to the reference atomic U1. The QDO expression for the dipole-dipole dispersion
coefficient �6 =

3
4ℏlU

2
1 is identical to the London formula and allows fixing l if the reference

atomic values of �6 and U1 are given. Since U1 and �6 are accurately known for all elements in
the periodic table [46, 153, 154], they form a baseline for the QDO parametrization. However, one
more condition is required to obtain {@, `, l}, for which different constraints can be imposed. A
reasonable idea is to fix @ = 1 a.u., since a QDO should reproduce the response of electrons. This
results in the fixed-charge QDO (FQDO)

@ = 1 , l = 4�6/3ℏU2
1 , ` = 9ℏ2U3

1/16�2
6 . (3.48)

However, fixing @ and using QDO recursion relations for high-order response usually yields large
errors in the multipolar response properties (see Fig. 2 and Refs. 111, 155). A more rigorous
approach was suggested by Jones et al. [117] by employing the dipole-quadrupole dispersion coef-
ficient �8. The mapping {U1, �6, �8} → {@, `, l} yields the Jones QDO (JQDO) parametrization
scheme
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@ =

√
`l2U1 , l = 4�6/3ℏU2

1 , ` = 5ℏ�6/l�8 . (3.49)

The JQDO approach improves the multipolar response over the FQDO model, while simulations
using the coupled JQDO model captured many remarkable properties of the bulk water and its
surface [149, 156]. However, the �8 dispersion coefficient is not directly measurable, and accurate
ab initio calculations of quadrupole (U2) and octupole (U3) polarizabilities and �8 – �10 dispersion
coefficients are technically feasible currently only for closed-shell species (noble gas atoms and
small molecules) or alkali and alkaline earth atoms with B valence shells [157–160]. For other
open-shell atoms (containing ?, 3, or 5 valence shells), convergence of quantum-chemical response
calculations becomes a technical hurdle [161] (see also Sect. 2.2.6). Thus, using higher-order atomic
response properties does not lead to a parametrization that would be universally applicable across
the periodic table as well as for small molecules.

Here, we introduce an optimized QDO parametrization (OQDO), where we effectively map the
dipolar atomic quantities {U1, �6} to the oscillator parameters. The third parameter is fixed by using
the force balance equation for vdW-bonded dimers recently derived [28, 114, 142]. Two equations
for @ andl follow the JQDO scheme, while the third one is replaced with a transcendental equation
for a product `l to be solved numerically (vide infra)

` =
5 ℏC6
lC8

→ exp

(
2`l'2

vdW
ℏ

)
=

27 · (U−1/3
fsc 00)4

(3ℏ/`l)2
, (3.50)

where Ufsc = 4
2/4cY0ℏ2 was suggested to be related to the fine-structure constant and 00 is the

Bohr radius. The vdW radius ('vdW) is calculated via the universal formula connecting it with the
dipole polarizability

U1('vdW) = (4cY0) '7
vdW/(U

−1/3
fsc 00)4 , (3.51)

as established in Ref. 114 for atoms in the periodic table. Comparing it with its counterpart

U1(`l, 'vdW) = (4cY0) '7
vdW

27 (`l/3ℏ)2

exp(2`l'2
vdW/ℏ)

, (3.52)
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which was obtained within the QDO model [28, 142], delivers Eq. (3.50) to determine ` from `l.

Figure 3.2: Correlation be-
tween 'vdW and the QDO
size f (within the three QDO
parametrizations) for 102 el-
ements in the periodic table.
The schemes OQDO(A) and
OQDO(B) correspond to two
solutions of Eq. (3.58).

The QDO Hamiltonian effectively captures the integrated atomic response. However, when mod-
eling molecules or solids, coupled QDOs must properly describe noncovalent interactions between
atoms. Considering two fragments 8 and 9 and using interatomic perturbation theory [4, 162], the
interaction energy can be written as the integrated product of the electron density of the moiety 8
with the electric potential generated by the moiety 9 [4, 163]

�int =

∫
di(r)+j(r) d3r . (3.53)

This formula is valid for all noncovalent interactions: electrostatics, induction, exchange-repulsion,
and dispersion. Its validity is evident for the former two cases [4, 163], and it was shown that
exchange [164] and dispersion [64, 165, 166] interactions can be represented using the form of
Eq. (3.53) with d and + being effective quantities different from free-atom counterparts.

The argument that dispersion interactions can be written using Eq. (3.53) goes back to Feynman’s
consideration of molecular forces [165], which was further elaborated by Hunt [64] with a focus
on dispersion forces and finally extended to dispersion energies with a demonstration of its validity
for real molecules and materials [167–170].

Response properties are given by variations of �int as
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X�int =

∫ (
Xdi(r)+j(r) + di(r)X+j(r)

)
d3r . (3.54)

For an external electric field E, which can also model the effect of the environment, Xd(r) =
d� (r) − d(r), where d� (r) is the electron density under the external field. Then, the dominant
contribution to X+j(r) is generated by the corresponding Xd 9 (r′) via the polarization potential [171]

+pol(r) = −
1

4cY0

∫
d� (r′) − d(r′)
|r − r′| d3r′ , (3.55)

which describes the change in the electrostatic potential of the system as a result of the polarization
of its charge density by the presence of another moiety (an electric field in this case). For the QDO
in a uniform electric field, the integral in Eq. (3.55) can be evaluated analytically as

+
QDO
pol (r) =

−@
4cY0

(
erf(Ã/f

√
2)

Ã
− erf(A/f

√
2)

A

)
, (3.56)

where r̃ = r − U1E/@ is the field-induced oscillator coordinate and f =
√
ℏ/2`l is the QDO

spread [19].

In the Supporting Information of [44], we present +QDO
pol (r) compared to +pol(r) calculated for 21

atoms (between H – Ca and Kr) within hybrid density-functional theory DFT-PBE0 [172–176]
shown to yield a highly accurate description of electronic response [177] comparable to coupled-
cluster calculations. The strength of the electric field was chosen individually for each element
depending on its reference static dipole polarizability [46, 154] so that the field-induced dipole
moment is set as d = U1E = 0.01 a.u., for all atoms.

To demonstrate that the agreement between the OQDO and the DFT polarization potential is not
due to our choice of the PBE0 functional, we have also calculated this quantity using MP2 and
CCSD(T). Ab initio curves shown in Fig. 3.3 were calculated using an orbital-optimization step
from converged wave functions, as implemented in ORCA [178–180] for both MP2 and CCSD(T)
projected densities. The basis set used for the calculation was aug-cc-pVQZ (uncontracted for the
CCSD(T) curves), except for Si in MP2, where aug-cc-pVTZ was used. As shown in Fig. 3.3, our
PBE0 results are in good agreement with the performedMP2 and CCSD(T) calculations.
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Figure 3.3: Comparison between PBE0 and orbital-optimized MP2/CCSD(T) calculations of the
polarization potential, given by Eq. (3.56), performed for Be, C, Ne and Si atoms [44].

Before comparing +pol(r) for real atoms with different QDO flavors, it is instructive to consider
which atomic properties can be faithfully captured by a QDO. First, the QDO does not aim to
describe static properties of the atomic electron density, but rather its response under applied
static and fluctuating fields, as also demonstrated by the insets in Fig. 3.4a,b. The electrostatic
potential (ESP) of a QDO is given by +QDO

el = −@ · erf (A/f
√

2)/A, so the charge @ determines its
magnitude. This explains why + FQDO

el is in good agreement with +DFT
el for hydrogen. However, the

QDO model does not describe +el for many-electron atoms because @ ∼ 1 a.u., while the ESP of
atoms scales non-linearly with / (see the example of carbon in the inset of Fig. 3.4b). Second, the
harmonic response captured by aQDOmodel should be sufficient to accurately describe integrated
electronic displacements induced by weak fields. However, it is much less clear how well different
QDO parametrizations perform for distributed polarization potentials described by Eq. (3.55)
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Figure 3.4: Polarization potential curves +pol(r) calculated with DFT–PBE0 and various QDO
parametrizations for (a) hydrogen, (b) carbon (no JQDO values are available), (c) sodium, and (d)
argon atoms. The FQDO and JQDO parametrization schemes are described by Eqs. (3.48) and
(3.49), respectively. OQDO(A) andOQDO(B) correspond to the two solutions of the transcendental
equation given by Eq. (3.50). In all cases, the direction along the applied field was chosen for the
plots. Reference values for the dipole polarizability U1 are shown for each element. The numerical
values of the normalized root mean squared error (Δ) are displayed for the three QDO flavors For
hydrogen and carbon atoms, the unperturbed electrostatic potentials (ESP) +el(r) are shown as
insets, indicating that aQDO captures the response of the atomic electron density, but not the static
potential itself [44].

for many-electron systems, given the analytical form of +QDO
pol (r) in Eq. (3.56). To answer this

question, in Fig. 3.4 we compare +pol of real atoms and +QDO
pol (r) employing the three QDO models

discussed above. We used the accurate ab initio reference data on U1 and �6 [46, 154, 181] to
parametrize FQDO and OQDO. When available, we also used the analogous data on �8 [157–159]
to parametrize the JQDO model. We observe that the OQDO model is capable of reproducing the
full range of the polarization potential of real atomswith reasonable accuracy, showing significantly
better agreement with the DFT-PBE0 results than FQDO and JQDO. To quantify this, for each
atom we calculated the root mean square error (RMSE) of the three QDO curves with respect to
the PBE0 reference curves and normalized the RMSE using the equilibrium depth of the PBE0
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Figure 3.5: Multipolar dispersion coefficients�8 and�10 as predicted by FQDO (@ = 1) andOQDO
models. Relative error RE = (� 9 − �ref

9
)/�ref

9
with respect to ab initio reference data [157–160]

is plotted. For the two models, numerical values of mean absolute relative errors (MARE) are
evaluated separately for atoms and molecules. In the case of O2 and CO2, no reliable ab initio
reference data for �10 could be found.

curve. The OQDO flavor has an error of 8.9% when averaged over 21 atoms, while JQDO and
FQDO produce average errors of 13.2% and 15.4%, respectively. We also emphasize that the
predictions of the OQDO model remain accurate for many-electron atoms such as noble gases and
alkali metals. It is especially reassuring that the OQDO model reproduces the non-linear +pol(r)
curves obtained from DFT calculations without any adjustments. In fact, the OQDO performance
is sensitive to variations in the QDO parameters (solutions A or B in Fig. 3.4), so the satisfactory
agreement shows that the chosenOQDO(A)model accurately describes real atoms. The significant
differences between the predictions of various parametrizations for+pol(r) underline the importance
of the optimal mapping between the atomic response properties and QDO parameters.

We now discuss the technical aspects of deriving the two solutions of the OQDO model (see
OQDO(A) and OQDO(B) in Fig. 3.4), and their connection to real atoms. The starting point is
Eq. (3.51) which connects the atomic vdW radius and its dipole polarizability. Within the QDO
model, Eq. (3.51) can be written as follows [28]:
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U1(`l, 'vdW) =
27 · (4cY0) '7

vdW

(3ℏ/`l)2 exp(2`l'2
vdW/ℏ)

. (3.57)

The OQDO parametrization imposes that the product `l in Eq. (3.57) delivers the same 'vdW as
in Eq. (3.51), for U1(`l, 'vdW) = U1('vdW).

For simplicity, we rewrite Eq. (3.57) in terms of the dimensionless variable G as

G = 0 41 G , G = ` l 02
0/ℏ = 0

2
0/2f

2 , (3.58)

with the dimensionless coefficients 0 and 1 given by

0 =
3U

2
3
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8
√

2
, 1 =
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02
0
=
(U1/4cY0)

2
7

U
8

21
fsc0

6
7
0

, (3.59)

where we used Eq. (3.51) to express 'vdW in terms of U1 . For all elements in the periodic table,
we find that Eq. (3.58) has two solutions, A and B. This is illustrated by the inset of Fig. 3.2 for the
case of Ar. It is instructive to consider that Eq. (3.58) has one solution when the polarizability of
an atom is equal to the critical value

U
(c)
1 /4cY0 =

(
8
√

2/34
) 7

2U−1
fsc 0

3
0 ≈ 431 a.u. , (3.60)

which is greater than the largest atomic dipole polarizability (U1 ≈ 400 a.u.) of Cs [154]. The
existence of two solutions extends beyond the employed QDO model. We obtained an analogous
result by using the Tang-Toennies potential [182] with the repulsive interaction treated by the
Born-Mayer form (see the Supporting Information in [44]).

Since theOQDO frequency is fixed by the second condition of Eqs. (3.48) and (3.49), the solutions
A and B for the product `l differ in both mass and charge, giving quite different results. First,
the +QDO

pol (r) constructed from solution B do not resemble the DFT potentials, while A is in good

agreement with them (Fig. 3.4). Second, the overlap integral ( = exp
(
− `l2ℏ '

2
eq

)
between two

QDOs at their equilibrium distance 'eq = 2'vdW is significantly larger for solution B, which
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Figure 3.6: Periodic varia-
tions of the QDO size f =√
ℏ/2`l with the atomic

number for the three differ-
ent parametrizations, as com-
pared to the atomic van der
Waals radii ('vdW) which are
evaluated via Eq. (3.2) using
reference atomic polarizabili-
ties [44].

violates the initial assumption used to derive Eq. (3.57) that ( is small at 'eq [28]. Third, the
QDO length f constructed from solution A follows the same periodic trend as the atomic vdW
radii, whereas solution B does not seem to correlate well (see Fig. 3.6). Therefore, throughout this
work, we refer to solution A as the optimized parametrization. For 102 atoms, the full set of QDO
parameters corresponding to both solutions A and B is presented in the Supporting Information
of [44] together with the reference values of {U1, �6}. Another noteworthy property of the OQDO
model (see Fig. 3.2) is a quasi-linear correlation between the QDO length (model quantity) and
the atomic vdW radius (physical observable). In fact, these quantities should be connected via
the dipole polarizability [19, 28]. This property is not captured well by the FQDO or the JQDO
models.

For practical calculations of the vdW energy and the construction of predictive force fields, the
multipolar contributions associated with the �8 and �10 coefficients can become relevant [111,
155, 160]. The available reference data for higher-order molecular dispersion coefficients have
significant uncertainties. Our careful examination of the literature reporting the reference values
of �8 and �10 (see 157–160 and references therein) identifies uncertainties of up to 20% for the
reference �8 and �10 values. Within the QDO formalism, it is straightforward to evaluate these
coefficients using closed-form expressions derived by Jones et al. [117]. In Fig. 3.5, we present
the predictions of �8 and �10 by FQDO and OQDOmodels compared to accurate reference values
compiled from the literature [157–160] for a set of 16 atoms (including alkali and alkaline earth
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metals and noble gases) and 12 small molecules. In general, our results show that the OQDO
parametrization improves the dispersion coefficients compared to the FQDO one, reducing the
MARE from 31% to 25% for �8 and from 68% to 33% for �10 when averaged over all 28 (26 for
�10) systems. The OQDO model consistently surpasses FQDO in accuracy for all systems, except
for alkaline earth metals, where FQDO gives more accurate results. Furthermore, Fig. 3.5 shows
that the deviations of OQDO dispersion coefficients from the reference values are consistent in
terms of their sign and magnitude. That is, for most systems FQDO underestimates �8 and �10,
but roughly for one third of them the dispersion coefficients are overestimated. The largest errors
of FQDO are observed for Xe in the cases of �8 (66%) and �10 (190%). On the contrary, OQDO
consistently underestimates both dispersion coefficients for all systems, except for �8 of Li and
�10 of Li and Cs. The maximum errors of OQDO are observed for CO2 (46%) in case of �8 and
CO (58%) in case of �10, which are significantly smaller than the maximum errors of FQDO. The
consistency of OQDO errors allows for a straightforward rescaling of dispersion coefficients: with
our best rescaling factors, 1.3 for �8 and 1.5 for �10, one can decrease the MARE of OQDO to
15% and 22%, respectively, which is consistent with the uncertainty of the reference molecular �8

and �10 values.

A more detailed analysis of the dispersion coefficients (including JQDO andOQDOmodels as well
as their scaled versions) can be found in the Supporting Information of [44], where we also discuss
the static polarizabilities U2 and U3. The latter becomes less important in theQDO approach where
the dispersion coefficients, determining the dispersion energy, are directly expressed in terms of the
QDO parameters. It is important to mention that the effects of three-body interactions are captured
by the OQDO scheme on equal footing with the JQDO scheme. The accuracy in determination of
�6 and �9 coefficients is known to be comparable [166]. In Ref. 117 it was shown that within the
QDOmodel the leading three-body dispersion coefficient is given by �9 = U1�6/4. Thus, with the
same reference U1 and �6 , there is no difference between the JQDO and OQDO parametrizations.

We presented the OQDO model based on a robust parametrization that only employs dipolar U1

and �6 , accurately known for all atoms in the periodic table. The new parametrization scheme
eliminates the need for reference higher-order dispersion coefficients and delivers accurate polar-
ization potentials, which improves the description of non-covalent interactions at short distances,
keeping the accuracy of the JQDO model for large distances due to the proper dipolar response.

The key point of the proposed parametrization is employing the relation between the dipole po-
larizability and the vdW radius, both of which are integrated quantities with many-electron ef-
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fects included. Thus, the OQDO scheme serves as an optimized and efficient mapping between
atoms/molecules and oscillators, which substantially advances our ability to model a wide range of
response properties of molecules and materials, also paving the way for the development of next
generation quantum-mechanical force fields for (bio)molecular simulations.

3.3 Conclusions

The properties of polarizability of quantum mechanical models and (real) atoms were studied in
this Chapter. Such model systems and free atoms allow one to deeply investigate the fundamental
aspects of polarizability. The advantage of studying these systems is twofold: not only it is possible
to obtain highly accurate – often exact – reference values, but such models also serve as the building
blocks for coarse-grained approaches applicable to realistic complex systems.

It was shown that, contrary to arguments rooted in classical electrostatics, polarizability scales with
the characteristic system size to the fourth power for a wide variety of models and real atoms. This
scaling law seems to hold for a wide variety of model systems having qualitatively different spectra,
as well as for many-electron atoms, provided that a definition accounting for electron correlation
effects is applied to such many-body quantum systems. As will be shown in Section 4.2, the scaling
law elaborated here is one of the reasons for the success of the model of interacting oscillators.

Recognizing the central role of the quantum Drude oscillator model in atoms-in-molecules ap-
proaches, a revised parametrization for atomic response functions was also presented here, show-
ing that knowledge of just dipolar properties is sufficient to predict multipolar as well as spatially
distributed responses. It is expected that this new parametrization will provide a more accurate
approach for simulations in which quantumDrude oscillators are used as coarse-grained fragments.
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4. Models for Molecular Polarizability

Section 4.1 is based on the paper
Góger, S. et al., PCCP 2023, 25, 22211–22222;

containing parts reproduced as permitted by the Creative Commons license.

Agoal of high practical importance is to develop the understanding and to create predictivemethods
for the polarizabilities of materials and large molecules, where long-range interactions play a key
role in determining their properties. Smaller organic molecules provide a convenient stepping stone
to this goal: the availability of large datasets of reference electronic-structure calculations enables
testing of approximate efficient models.

In this Chapter, it is shown how the statistical independence of dipole polarizability and the energy
difference between the highest occupied and lowest unoccupied molecular orbital (HOMO–LUMO
gap) leads to a design principle that can be utilized when both quantities must be controlled.
Notably, correlation between these two properties is expected based on textbook knowledge (see
Sect. 4.1.1 for a detailed discussion), so the lack of correlation also unravels an unexpected behavior
of polarizability.

Sect. 4.1 contains an adapted version of the publication [29] – To this work, I have contributed by
conceptualizing the project, generating and analyzing the dataset as well as being involved in the
visual presentation of the results and the writing of the text.

4.1 Empirical Correlations of Molecular Polarizability

Understanding the correlations – or lack thereof – between molecular properties is crucial to enable
fast and accurate molecular design strategies. In this Chapter, based on [29], we explore the
relation between two key quantities describing the electronic structure and chemical properties
of molecular systems: the energy gap between the frontier orbitals and the dipole polarizability.
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Based on the recently introduced QM7–X dataset [183], augmented with accurate molecular
polarizability calculations, as well as analysis of functional group compositions, we show that
polarizability and HOMO–LUMO gap are uncorrelated when considering sufficiently extended
subsets of the chemical compound space. The relation between these two properties is further
analyzed on specific examples of molecules with similar composition as well as homooligomers.
Remarkably, the freedom brought by the lack of correlation between the molecular polarizability
and the HOMO–LUMO gap enables the design of novel materials, as we demonstrate on the
example of organic photodetector candidates.

4.1.1 Polarizability and HOMO-LUMO Gap

Data-driven molecular design is an increasingly pursued strategy in chemical physics and compu-
tational chemistry. The search for novel molecules with tailored physicochemical properties for a
given functionality is continuously motivating the development of a wide variety of computer-aided
molecular design approaches [184–186]. The ultimate goal is to establish a feasible protocol that
can be used for exploring the chemical compound space (CCS) through systematic targeting of
physical properties. Physicochemical quantities, such as color, conductivity, excited state lifetime,
electron affinity, ionization potential, and solubility, are commonly used in the design of molecular
photosensitizers or optoelectronic devices, for example [187–190]. Given the complexity of a
multi-property design task, it is essential to first have a solid grasp of the physical relationships
between the various target properties [191].

In this context, two fundamental quantum-mechanical (QM) electronic properties are the optical
gap and the molecular dipole polarizability (U). The optical gap is an experimental property that
measures the energy corresponding to the lowest observed optical transition. Many computational
studies use the HOMO–LUMO gap Δ�HL (the difference between the energies of frontier molec-
ular orbitals in the ground state) as a starting point in approximating experimental optical gaps.
This approximation is widely favored due to the computational challenges associated with em-
ploying highly accurate quantum mechanical methods incorporating orbital relaxation effects (e.g.
time-dependent density functional theory or multi-configurational self-consistent field methods),
especially when investigating vast areas of the CCS, macromolecules, molecular aggregates, or
molecular junctions [192–194]. Thus, the HOMO–LUMO gap plays a crucial role in understand-
ing various aspects of chemical reactivity, excitation energies, and several key optical properties in
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these organic systems. For example, its calculation is essential to gain insight into optical absorp-
tion spectra, refractive indices, and conductivity [195–198]. For correctness of terminology, the
HOMO–LUMO gap obtained from density functional calculations should be referred to as Kohn-
Sham (KS) gap. Although the relations between different gaps (Kohn-Sham, fundamental, and
optical) are subtle and have been discussed in detail in the literature [199, 200], in this manuscript
we will use the KS gap as a proxy for observable experimental properties.

The molecular dipole polarizability U (referred to simply as polarizability in this Section as well as
in the manuscript), on the other hand, describes the dipolar response of a molecule to an external
electric field, becoming a key quantity for understanding intra- and intermolecular interactions
(e.g. dispersion interactions, substituent and solvent effects as well as supramolecular structure
formation) and for determining spectroscopic properties of molecules (Raman, Raman optical ac-
tivity, and sum frequency spectroscopy) [4, 201–207]. These features make both polarizability
and HOMO–LUMO gap essential in the derivation of structure-property/property-property rela-
tionships and, consequently, in the development of design strategies for molecules with a targeted
array of QM properties for applications such as molecular dyes [208], optoelectronic devices [209],
molecular junctions [210, 211], heterogeneous catalysts [212] and materials for non-linear op-
tics [22, 213].

Various computational methods and predictive models have been developed to estimate HOMO–
LUMO gaps and polarizabilities for organic molecules with different levels of trade-off between
precision and computational cost [31, 77, 214, 215]. Lately, it has become feasible to access
a plethora of highly accurate QM properties – including Δ�HL and U – for large swaths of the
chemical compound space (CCS) [183, 216–219]. Comprehensive analyses of these extensive
datasets may help to understand the deeper physical picture behind the inherent property-property
relationships. With this motivation, we herein conduct an exhaustive investigation of the two-
dimensional space defined by HOMO–LUMO gap and polarizability (i.e. (Δ�HL, U)-space) for
small organic molecules with the aim of getting insights into the intrinsic relationship between
these two properties. We find that while correlation might appear in homologous molecules (that
is, molecules differing by a constant increment, meaning that their physicochemical properties
follow a general trend), if a large enough subspace of CCS is considered, HOMO–LUMO gap
and polarizability are essentially uncorrelated and their 2D space is represented as a structureless
“blob”. Through the analysis of diverse molecular sets, it is shown that this lack of correlation can
be related to the fact that polarizability is primarily determined by the atomic composition, while
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the HOMO–LUMO gap heavily depends on the arrangement of the atoms into chemical functional
groups. Hence, we expect that our findings will assist the development of novel design principles
in which the control of multiple electronic properties is relevant, as we finally demonstrate on the
case of molecular photodetectors.

The outline of the discussion is as follows: in Sect. 4.1.2, we review accurate and approximate
models for polarizability and HOMO–LUMO gap. In Sect. 4.1.3, we exhaustively examine the
polarizabilities (U) and HOMO–LUMO gaps (Δ�HL) of diverse molecular sets. In doing this, we
have extended the QM7–X dataset [183] with functional group information and polarizabilities
calculated with the hybrid PBE0 functional. In assessing our computational setting, we tested the
predictive power of this functional against coupled cluster CCSD(T) calculations, and found an
overall accuracy of 1.9%. As a first order approximation to predicting polarizabilities of small
organic systems, we consider a linear combination of atomic contributions in Sec. 4.1.3. In
Sect. 4.1.3, we then perform PBE0 calculations of polarizability (see Sect. 4.1.6 for computational
details) for homologous molecules and explore the relationship with their HOMO–LUMO gaps. A
statistical analysis of the (Δ�HL, U)-space using a subset of molecules contained inQM7–X dataset
is carried out in Sect. 4.1.3. Our proposed design principle is discussed and demonstrated in more
detail on the case of organic photodetectors; see Sect. 4.1.4. The computational methods as well
as the dataset used are presented in Sect. 4.1.6, following the main conclusions in Sect. 4.1.5.

4.1.2 Models for Polarizability and Frontier Orbital Energy Gap

Since our main focus is on having a better understanding of the relationship between polarizability
and HOMO–LUMO gap in organic molecules, we first revisit the different qualitative and quan-
titative models used to compute them. In general, a variety of electronic structure methods can
be employed to calculate both of these quantities. The choice of a computational level depends
on the specific target property and the necessary trade-off between computational cost and accu-
racy. Although the calculation of the HOMO–LUMO gap is feasible using various mean-field
electronic structure methods, orbital relaxation effects play a significant role in determining optical
properties [220]. However, in computationally expensive studies such as the analysis of macro-
molecules or extensive datasets (e.g. QM7–X considered in this manuscript), HOMO–LUMO
gap is often used as a first approximation to experimental quantities. Polarizability (U) is typi-
cally obtained from finite field, coupled perturbed Hartree-Fock or density functional perturbation
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theory (DFPT) calculations [69, 214, 215]. However, these electronic structure methods require
considerable computational resources when dealing with larger molecules or significant swaths of
the CCS. Accordingly, we will next discuss alternative physical models, empirical correlations,
and approximate methods that can be used to obtain these QM properties as well as to broaden
the comprehension of property-property relationships in CCS. We will start with examining the
polarizability, for which analytical models (such as the quantum Drude oscillator, or QDO) as
well as empirical correlations and predictive semiempirical methods are available. After this, the
models for the HOMO–LUMO gap will be mentioned, before concluding the section by analyzing
what is known about the correlation between these two quantities.

A connection between HOMO–LUMO gap and polarizability can be anticipated starting from the
perturbative expression for polarizability using the dipole moment operator ˆ̀ within second order
perturbation theory as [4, 19]

UUU = 2
∞∑
=≠0

〈Ψ0 | ˆ̀ |Ψ=〉 ⊗ 〈Ψ= | ˆ̀ |Ψ0〉
�= − �0

, (4.1)

where Ψ0 and �0 are the ground state wavefunction and energy, respectively, and = is the index of
the excited states. Indeed, since Δ�HL = �1 − �0 is commonly much smaller than the energy gap
of higher excited states, the first term of the sum in Eq. 4.1 provides a first-order approximation to
the infinite series, and hence there could exist an inversely proportional relationship between Δ�HL

and U, i.e. U ∝ (Δ�HL)−1.

Equation 4.1 can be evaluated analytically only for simple model systems (such as the hydrogen
atom or a quantum Drude oscillator). For many-electron systems, the sum can only be evaluated
numerically and requires including bound-bound and bound-continuum transition dipoles [221].
Modeling atoms or larger coarse-grained fragments with QDOs and solving the dipole-dipole
screening equations is known to be an effective method for predicting polarizability, and it is also
the basis for the Many-Body Dispersion (MBD) method [41, 42]. Since the response properties
of all atoms and molecules can be represented by QDOs by carefully setting the three parameters
{charge @, frequency l,mass `} of the model, the analysis of the polarizability of the QDO
Hamiltonian should generally be transferable to any system. Therefore, some attention is given to
this model.

Due to selection rules of the dipole operator, only the first excited state contributes to the dipole
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polarizability of a QDO [19, 117], making it effectively a two-state system

UQDO = 2@2 〈Ψ0 | ˆ̀ |Ψ1〉〈Ψ1 | ˆ̀ |Ψ0〉
�1 − �0

=
@2

`l2 , (4.2)

where @ is the magnitude of the charge bound by a harmonic potential with frequency l, having a
mass `. The HOMO–LUMO gap of a QDO is Δ�HL = ℏl, which indeed appears in the denomi-
nator. However, U can be controlled separately through the other two individual QDO parameters
{@, `}, independently from Δ�HL. This means that for the QDO model, the polarizability and the
HOMO–LUMO gap are mutually related, yet they could be tuned separately from each other.

The idea of approximating the polarizability using an effective two-state system (so-called Unsøld
approximation) [19, 84] is also useful for understanding qualitative trends. Within this approxima-
tion, polarizability is written using an average excitation Δ� as a fitting parameter

UUU =
2
Δ�

∞∑
=≠0
〈Ψ0 | ˆ̀ |Ψ=〉 ⊗ 〈Ψ= | ˆ̀ |Ψ0〉. (4.3)

Setting the average excitation to Δ�HL is therefore exact for the QDO model, but the connection
between these quantities for many-electron systems is not known in general [85].

Investigating correlations between polarizability and variousmolecular properties can lead to useful
relationships, such as the recent observation that polarizability scales with the fourth power of the
characteristic size of the system [19]. The correlation between polarizability and orbital energies is
relevant from a theoretical point of view, as it forms the foundation of Pearson’s hard-soft acid-base
(HSAB) theory [20, 21]. Based on recent theoretical works, we can postulate that polarizability
can be expressed as a function of two factors accounting for i) ground state geometry (e.g., van
der Waals radius or molecular volume) and ii) electronic structure (e.g., ionization energy or
hardness) [19, 22–28]. Although these correlations provide useful conceptual insights, they have
not been used for constructing accurate numerical predictions.

There are two types of predictive models for polarizability with a lower computational burden than
electronic structure calculations. First, approximations for polarizability can be constructed based
on the group contribution principle, which divides polarizability into atomic or bond contribu-
tions [212, 222]. These models can offer somewhat accurate predictions with minimal molecular
information and computational effort, and we will assess such models in this work. As a sec-
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ond approach, machine learning (ML) models have been proposed as a cost-effective solution
with improved accuracy [77]. However, the training process and accuracy of the ML models are
strongly dependent on the features of the dataset (e.g. chemical diversity, molecular size, number
of samples) and on the ML method itself.

For the case of HOMO–LUMO gap, there is a well-established underlying physical principle
to determine this property: it is known that the HOMO–LUMO gap of individual functional
groups (called chromophores in this context) is transferable, with values documented in standard
reference texts [223]. These chromophores also form the foundation for accurate ML models and
earlier empirical rules for the prediction of HOMO–LUMO gaps [224, 225]. The HOMO–LUMO
gap of a single functional group can be understood based on molecular orbital theory, the most
common version of which is the Hückel theory for conjugated systems. For instance, the inverse
proportionality between the number of monomers and the HOMO–LUMO gap of polyenes is
well explained within this theory [226]. In the case of noninteracting functional groups, their
optical spectra are effectively independent and, consequently, the frontier energy gap of a molecule
is determined by the lowest value for the constituent functional groups, making it an inherently
size-independent (intensive) property.

In agreement with the analysis of the QDO model, recent studies relying on large datasets (7 k
structures from the GDB-13 dataset as well as the tmQM dataset of 86 k transitional metal
complexes) suggest that there is no overall correlation between HOMO–LUMO gap and polariz-
ability [78, 227]. However, correlation has been observed both experimentally and computationally
for different classes of structures (e.g. organic dyes and inorganic clusters [208, 228–230]), with
the notable exception of smaller systems where the HOMO–LUMO transition is symmetry for-
bidden [206]. In the following section, we explore the source of such seemingly contradictory
results by showing that investigating a reduced subset of the chemical compound space can lead to
correlations between quantities that are generally uncorrelated.

4.1.3 Results and Discussion

First Order Linear Atomic Additive Model for Polarizability

To understand the correlation between polarizability and theHOMO–LUMO gap, we first show that
polarizability can be determined, up to a large degree, by knowing only the atomic composition of
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Table 4.1: Revised linear regression parameters for the atomic additive polarizability model of
Bosque et al. Note that the values in the original paper are presented in Å3, whereas the values
here are in bohr3. The relatively low influence of the intercept can be seen by comparing the last
two rows; the rest of our manuscript uses the parameters presented under “This work”

Intercept C Cl H N O S
Bosque 2.14 10.20 14.60 1.17 6.95 3.85 20.20

This work 1.71 10.10 12.70 0.87 7.88 4.00 19.10
No intercept 0.00 10.37 13.00 0.88 8.11 4.24 19.37

a molecule. This analysis is done using the PBE0 polarizability values calculated for the QM7–X
molecules, contrasting these quantum chemical calculations with a linear atomic additive method.
The simplest atomic additive method (motivated by Bosque [31]) approximates the polarizability
of a molecule through a linear combination of the number of each atom-types = weighted with a
type-specific factor �8, together with an intercept <

U = < +
∑
8

�8=8 . (4.4)

Bosque’s model was fitted directly using experimental data of 426 compounds. The fitted < and
�8 values for C, Cl, H, N, O, and S are listed in Table 4.1. Consequently, we have used here the
QM7–X dataset [183] (see Sect. 4.1.6) to validate the accuracy and reassess the model parameters
on a significantly larger swath of the CCS. In doing so, we have considered the first conformer for
each entry in the QM7–X dataset; a total of ≈ 13 k structures. The linear regression parameters
optimized on QM7–X yield the results listed in Table 4.1. Bosque’s parameters hold relatively
well for QM7–X molecules, accounting for a correlation coefficient ('2 value) of 0.65 with a
mean absolute percentage error (MAPE) of 6.11 %. However, the re-fitted parameters improve the
correlation coefficient to 0.72 and reduce the MAPE value to 3.94 %, i.e. the prediction accuracy is
increased by a factor of 1.6. Note that the presence of the intercept < in Eq. 4.4 is just an artifact of
the model, since the prediction should be zero when no atoms are present. Inclusion or omission of
<, however, changes neither the goodness of the regression nor the numerical value of the atomic
contributions to a meaningful degree (the mean absolute error of the linear model goes from 3.078
a.u. to 3.079 a.u.; similarly to what had also been observed by the authors). Therefore, we decided
to include the intercept in our further analysis, to be consistent with Bosque’s approach.

A shortcoming of atomic additive methods is that the same polarizability is predicted for all
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structural isomers, since only the total number of each atom-types is used in the prediction. This
is manifested in Fig. 4.1 as having a systematic error within each possible Upred value and further
demonstrated in the inset on the case of molecules with chemical formula C6H8O. Indeed, the
reference polarizabilities for this given chemical formula span a range of 30 a.u., but the predicted
value is 73.4 a.u. for all molecules, irrespective of the chemical arrangement of the atoms.
From Fig. 4.1, it can also be inferred that such a simple additive model will only become worse
for molecules of increasing size. Indeed, a trend appears where larger molecules exhibit stronger
deviations towards higher polarizabilities – a trend that an additivemodel is unable to describe. This
can especially be the case for polymeric molecules which form long chains, whose polarizability
is highly anisotropic and it behaves increasingly non-additively with size.

Figure 4.1: Performance of
the atomic additive method
of Eq. (4.4), using the pa-
rameters “This work” in Ta-
ble 4.1 The inset shows the
inherent shortcoming of the
model, predicting the same
polarizability for all C6H8O
isomers [29].

To differentiate between structural isomers, a descriptor that accounts for different geometric prop-
erties (for example, radius of gyration) might be constructed, since polarizability is an extensive
property [25, 28]. This extensivity is only partially captured by atomic additive methods insofar
as increasing the number of atoms in a molecule inherently increases the size as well. More accu-
rate models should also differentiate between similar atoms based on their surrounding chemical
environments, as is done for example in Ref. [19], where the short-range environment is taken
into account by Hirshfeld partitioning as well as in the self-consistent screening approach used in

66



4.1. EMPIRICAL CORRELATIONS OF MOLECULAR POLARIZABILITY

the Many-Body Dispersion (MBD) method [41, 42]. Therefore, while the shown first-order linear
model is limited by its accuracy, it can serve as a baseline for more accurate methods involving
coupling between atoms in a molecule.

In summary, a first-order approximation to polarizability can be constructed just by using an
atomic additive model without explicit knowledge of the molecular spatial arrangement or the
local chemical environments. While the predictive power of such a model is rather restricted (i.e.
the chemical environment of each atom is not described), its rough correlation with reference
electronic-structure calculations (see Fig. 4.1) gives a clear evidence that a significant fraction of
the polarizability is determined by just the atomic composition.

Case Studies for the Relation between the HOMO-LUMO Gap and Polarizability

Having shown that polarizability depends mainly on the atomic structure of molecules, we now
turn into exploring the correlations between polarizability and HOMO–LUMO gap. In doing so,
we here discuss a set of case studies of select molecules, with all calculations being done using the
PBE0 functional, as described in Sect. 4.1.6.

Experimental studies often focus on examiningmolecules with similar electronic structures, leading
to hidden correlations between the optical gap and the polarizability. In our path toward the
general understanding of the relationship between these QM properties, we now examine two
different cases: (i) molecules having the same atom-type composition but slightly different chemical
compositions, and (ii) molecules with the chemical properties fixed while increasing the system
size (e.g. oligomers).

Constitution isomers. In general, the functional groups in a molecule govern the nature and order
of the molecular orbitals, determining the HOMO–LUMO gap and the orbitals involved in the
electronic transitions. To explore the relationship between HOMO–LUMO gap and polarizability
as a function of chemical functionality, we present select examples of constitutional isomers, i.e.
molecules with the same atomic composition that belong to different substance classes due to the
presence of different functional groups.

As a first example, two constitutional isomers with the formula C5H8O, namely an U, V- (3-
penten-2-one) and a V, W-unsaturated enone (4-penten-2-one) is considered (see Fig. 4.2(a)). It
is noticeable that 3-penten-2-one has a smaller gap compared to 4-penten-2-one (by 1.12 eV)
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Figure 4.2: (a) Two constitution isomers, i.e.
molecules with the same atomic composition but
different chemical properties, showing similar po-
larizabilities but different HOMO–LUMO gaps.
(b) HOMO–LUMO gap and polarizability of all
possible linear structures having eight carbon
atoms, an oxo group, and a double bond between
two of the carbons. The numbering of carbon
atoms is shown in the case of octane-3-one, with
n representing the numbering of the carbon atom
at the start of the double bond (see Fig. S 5 of
ESI [29] for the explicit structures). The polariz-
ability and HOMO-LUMO gap values are results
of PBE0 calculations as described in Sec. 4.1.6.

because delocalization results in greater mobility of c-electrons throughout the molecular structure.
However, both molecules have a similar polarizability due to the identical atomic composition as
well as a similar total size.

A second set of constitutional isomers with the formula C8H14O was constructed for molecules
bearing a C=O (oxo-group) and C=C (alkene-group) on an octane backbone. Therefore, these
isomers are formed by the following classes of substances: one ketene, one conjugated aldehyde,
four conjugated ketones, five non-conjugated aldehydes, and eight non-conjugated ketones (see
Fig. 4.2(b) as well as Fig. S 5 of ESI [29]). Although these structures are chemically quite different,
their orbital symmetries are largely similar, leading to a correlation between their polarizability and
HOMO–LUMO gap. Note, however, that the polarizabilities of the structures are all within 4% of
each other, while the variation of the HOMO–LUMO gap is about five times larger. As such, the
statement that polarizability is mainly determined by the atomic composition and HOMO–LUMO
gap by the chemical composition seems to hold, even though some correlation between these two
quantities is observed due to the similarity of the structures.

Homologous series ofmolecules. Aspreviously elaborated,HOMO–LUMO gap and polarizability
can seemingly correlate for molecules that belong to a homologous series. This can be explained by
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the fact that the electronic nature and order of the frontier orbitals are often identical for structurally
and electronically similar molecules. Consequently, the decrease in the HOMO–LUMO gap can
correlatewith the increase in polarizabilitywhen consideringmolecules of a homologous serieswith
an increasing number of repeating units. To support this assumption, we consider in the following
a series of oligomers, namely alkanes (C<H2<+2) and alkenes (C<H2<; see Fig. 4.3). The example
is taken from Afzal et al. [231], with polarizability and HOMO–LUMO gap recalculated within
our computational setup (see Sect. 4.1.6).

Figure 4.3: HOMO–LUMO gap (blue dots) and polarizability (red dots) of the oligomers of (a)
ethylene and (b) acetylene. The calculations of both properties were carried out as described in
Sect. 4.1.6.

Fig. 4.3 shows a decreasing behavior of HOMO–LUMO gap for oligoethylene and oligoacetylene as
a function of the number of monomers =, in agreement with previous works, as well as qualitative
predictions from the Hückel model [226, 232]. In fact, we have found that the absence of a
qualitative change in the electronic structure within the ethylene oligomers leads to a relatively
small HOMO–LUMO gap change going from = = 1 → 7 (≈1.5 eV) compared to the acetylene
oligomers, where every monomer modifies the conjugation, producing a more significant change
of ≈5.0 eV. Unlike the HOMO–LUMO gap, the behavior of polarizability in molecular chains
cannot be simply explained. The observation that polarizability increases monotonously with =
is in line with both the principles of atomic additive models and the correlation with molecular
size. However, the absolute magnitude of the polarizability values is significantly different for
the two sets of oligomers, and this difference increases with increasing number of monomers.
This quantitative difference cannot be explained by additive atomic models or correlations using
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molecular size, but it correlates with the reductions in HOMO–LUMO gap. In particular, not
even AlphaML [77] can predict this behavior: the model predicts 181 a.u. for oligoethylene and
227 a.u. for oligoacethylene in the = = 7 case, with the DFPT results being 177 a.u. and 360
a.u., respectively. Therefore, the difference due to conjugation is underestimated by a factor of
four even when using ML methods, and this error is expected to increase with increasing chain
length. Until now, we are not aware of any other simple polarizability estimation method that can
accurately predict the values in Fig. 4.3. These findings provide clear evidence that further work is
necessary to enhance our understanding and improve the accuracy of computational methods used
for calculating polarizability, even for relatively simple molecules such as hydrocarbon oligomers.

Clustering of Structures in the (Δ�HL, U)-Space

To draw more general conclusions about the relationship between the properties in question, we
analyze the two-dimensional (2D) property space defined byHOMO–LUMO gap and polarizability
for a selected subset of QM7–Xmolecules [191] (see Sec. 4.1.6). HOMO–LUMO gap values were
taken from the dataset, while polarizability values were recalculated using the computational setup
explained in Sect. 4.1.6. All examples presented previously might suggest that there is a correlation
between HOMO–LUMO gap and polarizability. However, these examples considered similar
molecules with respect to their functionality or chemical composition — factors that essentially
determine both the HOMO–LUMO gap and polarizability. From optical spectroscopy it is known
that the optical gap is primarily determined by the functional groups in a molecule. This is reflected
in characteristic optical gaps (vertical excitation energies of the lowest electronic transitions) per
functional group, for example, the cc∗ absorption of an isolated alkene-group as chromophore is
between 7.51 and 6.70 eV. Since we are assuming that HOMO–LUMO gap is a good starting point
for determining the optical gap of a molecule, it would be expected to find that Δ�HL values are also
clustered by certain functional groups. On the contrary, our analysis has shown that polarizability
(U) is primarily determined by the atomic composition of a molecule. The QM7–X dataset enables
us to study the (Δ�HL, U) relationship more broadly because it covers a considerable number and
variety of chemical compounds.

Fig. 4.4(a) shows the (Δ�HL, U)-space for theQM7–Xmolecules – indicating no direct relationship
between the two quantities across the chemical compound space spanned by this dataset ('2 = 0.13).
Furthermore, the role of the two main factors that determine Δ�HL (functionality) and U (atomic
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composition) are highlighted in Fig. 4.4. Panels (b) and (c) exemplarily display the distributions
of Δ�HL and U for aldehydes and primary alcohols, i.e., molecules that bear one of the respective
functional groups. Subplots (d) and (e) show the respective distributions for molecules with equal
atomic compositions, namely with the molecular formulas C4H8O and C4H9N, respectively.

Functional groups & HOMO-LUMO gap.

In Figs. 4.4(b,c), we highlight the frequency plots of Δ�HL and U values for all non-conjugated
aldehydes (blue) and primary alcohols (pink) of our select dataset. Fig. 4.4(c) clearly reflects the
common notion of chromophores, namely that HOMO–LUMO gap is mainly determined by the
type of chromophore (e.g., aldehyde or primary alcohol group) and the character of the lowest
energy electronic transition (e.g. =c∗- or =f∗-transition). Thus, Δ�HL values for aldehydes only
show a value of circa 6.5 eV while, for primary alcohol group, they extend from 7.2 eV to 7.8 eV.

To fully explore the role of functional groups in the (Δ�HL, U) relationship, the QM7–Xmolecules
were categorized into twelve major classes according to the functional groups they are bearing (see
Sec. 4.1.6). Fig. S 4 of the Supporting Information in [29] shows the distribution of all functional
groups detected in the dataset, confirming that Δ�HL is clustered along the chemical properties of
the molecules.

Unlike Δ�HL, molecules containing aldehydes (blue) and primary alcohols (pink) exhibit polar-
izabilities that extend throughout the entire range of the dataset (see Fig. 4.4(b)). This finding is
further reflected in the average Kolmogorov-Smirnov-metric (measuring the statistical distance be-
tween two general distributions) of the individual molecular classes in the (Δ�HL, U)-space, which
is 0.81 and 0.40 for Δ�HL and U, respectively. To quantify the difference between the distributions
of the eleven molecular classes studied in the Δ��!-U space, the pairwise Kolmogorov-Smirnov-
distances (i.e., 55 unique pairs) were calculated between the normalized quantities using the SciPy
implementation[233]. An (unnormalized) example for a unique pair is shown in the main article
in Figure 1b (U) and 1d (Δ��!) for non-conjugated aldehydes and primary alcohols.

The Kolmogorov-Smirnov distance for two probability distributions 8 and 9 is defined using their
individual empirical distribution functions � (-) as

�8 9 = sup
���8 (G) − �9 (G)�� , (4.5)

Most commonly, the Kolmogorov-Smirnov distance is used in testing whether the probability
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(c)

(e)

(d)(b)(a)

Figure 4.4: (a) Polarizability (U) vs. HOMO–LUMO gap (Δ�HL) for molecules of the subset
of QM7–X under study (see text). Histograms of the HOMO–LUMO gaps (b) for all non-
conjugated aldehydes (blue) and primary alcohols (pink) and (d) for structures having the atomic
composition C4H8O (black) and C4H9N (blue). Histograms of polarizabilities (c) for all non-
conjugated aldehydes (blue) and primary alcohols (pink) and (e) for structures having the atomic
compositionC4H8O (black) andC4H9N (blue). The difference in the clustering in the two quantities
is reflected in the degree of separation between the histograms.

distributions 8 and 9 have the same underlying distribution [234]. In our case, we calculate this
metric for distributions that are known to be different, not for the purpose of a statistical test but to
quantify the distances of the distributions. In this context, the absolute value of the Kolmogorov-
Smirnov distance has little practical information; however, comparison of the distances confirm
that the homo–lumo gap depends on the functional groups present, whereas polarizability does
not. Our analysis then demonstrates that functional groups primarily affect the HOMO–LUMO
gap rather than polarizability, resulting in well-defined molecular clusters on the Δ�HL-axis.
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Atomic composition & polarizability.

According to the Kolmogorov-Smirnov analysis, the functional groups only indirectly influence the
magnitude of the polarizability in a given molecule, whereas the atomic composition is a crucial
factor for the determination of the polarizability. This finding is also in line with the fact that a good
correlation is achieved between the first-order atomic additive model and the reference DFT data
shown in Fig. 4.1. The Δ�HL and U values for a set of two constitution isomers, namely with the
chemical formula C4H8O (including aldehydes, dialkyl ethers, enol ethers, as well as primary and
secondary alcohols) and C4H9N (including carbonitriles and primary/secondary aliphatic amines)
is also presented in Figs. 4.4(d), showing a narrow polarizability distribution. These results are
another clear evidence that U, to a reasonable approximation, is independent of the actual chemical
arrangement of the atoms in the molecule, but it mainly depends on the total number of atom-types.

In summary, we can conclude that the lack of general correlation observed in (Δ�HL, U)-space is
a consequence of two main facts: (i) the HOMO–LUMO gap is determined by the nature of the
chemical composition (see Fig. 4.4c vs. 4.4e) and (ii) the polarizability is largely determined by
the atomic composition (see Fig. 4.4b vs. 4.4d).

4.1.4 Case Study: Design of Photodetectors

We have demonstrated in previous sections that polarizability and HOMO–LUMO gap do not
correlate across large swaths of the CCS. Now, we present how this lack of correlation can be
exploited for molecular design purposes. The property data used for this analysis is from the donor-
acceptor (DA) dataset [235], which was designed to enumerate promising organic photodetector
candidate molecules. The DA dataset contains only molecular structures and HOMO–LUMO gap
values, while the estimation of polarizability was performed using the revised Bosque model, as
elucidated in Sect. 4.1.3.

A common challenge in materials science is the effective design of photodetectors. These optoelec-
tronic devices capture light and convert it into electric signal, therefore, playing an important role
in sensing, monitoring, and optical communication. The wide range of physicochemical properties
spanned by organicmolecules allows various design strategies, which ultimately led to the emerging
field of organic photodetectors [236, 237]. HOMO–LUMO gap is one of the key quantities that can
be used to approximate the coupling strength of molecules with light; therefore, any design strategy
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motivated by optics will be initially based on this property [235, 238]. Since the fundamental
function of photodetectors is to convert light into electrical current, controlling the electrochemical
behavior is also crucial. Specifically, the electrochemical work function plays a critical role in the
description of organic photodetectors [239, 240], as opposed to organic semiconductors, where the
focus is usually on charge carrier mobility [241]. The work function q of an electrode is known
to change with the polarizability of the absorbed molecules as well as the surface coverage, as
described by the Topping equation [242] (written for a square lattice)

4Δq = ± 4`\
Y032

(
1 + 9U′

(
\

32

)3/2
)−1

. (4.6)

This expression highlights that the work function q also depends on the the dipole moment ` and
polarizability U of the molecules, besides the surface coverage \ and the lattice constant of the
absorbate 3. Notice that an effective polarizability U′ is used to represent the properties of the
absorbedmolecules in Eq. 4.6, which is usually an order of magnitude larger than the free molecular
polarizability [243, 244]. Although it is known to fluctuate with the coverage rate, this equation can
serve as a useful initial reference to screen potential molecules for photosensitizers according to
the intended work function [239, 240]. Indeed, this relationship between both properties makes it
important to regulate the polarizability ofmolecules to achieve the desired electrochemical behavior.
Through this connection, it can be seen that molecules with higher polarizability tend to facilitate
electron injection while those with lower polarizability tend to facilitate hole injection [240].

In the preceding sections, we have postulated that polarizability and HOMO–LUMO gap are
uncorrelated if a large enough subset of the CCS is considered. This law can now be translated to
the domain of organic photodetectors: since HOMO–LUMO gap and polarizability are generally
independent, it should be possible to design a photodetector with a given detection peak that has
an arbitrary work function. Alternatively, if matching of electrochemical properties of different
systems is the goal, it should be possible to design organic photodetectors with each having an
arbitrary optical detection window, yet having the same effect on the work function of electrodes.
To demonstrate this statement, we use a dataset generated by Xu et al. [235], who used a self-
improving Bayesian search to predict possible photodetector molecules in a large subset of CCS.
The selection criterion for possible photodetectors was based on both HOMO–LUMO gap and
singlet-triplet energy gap, which were evaluated from ground state DFT and TD-DFT calculations,
respectively. Of all predicted molecules that have a donor and an acceptor site (DA structures),
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Figure 4.5: HOMO–LUMO gap and polarizability of the structures in the donor-acceptor (DA)
dataset of Xu et al.[235]. The maximum of theHOMO–LUMO gap density (4 eV) is marked with a
blue line. The four structures corresponding to the four quartiles (within ± 0.1 eV) in the predicted
polarizability are also shown, together with the predicted values (in a.u.).

we have only selected those cases that have the same atom types as QM7–X molecules (see also
Table 4.1), leading to a total of 5, 311 structures. Using the atomic additive model described
in Sec. 4.1.3, we have estimated the polarizabilities of the selected structures; the graph of the
polarizability versus HOMO–LUMO gap is shown in the top panel of Fig. 4.5. Here, one can see
that most structures are found in a relatively extended region having Δ�HL between 3 and 5 eV
and U between 200 and 400 a.u., with the possibility to find outliers in all directions around this
cluster. In particular, if a high shift in the work function is desired, there appear to be several good
candidates with varying optical absorption ranges (see bottom of the graph).
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Moreover, our calculations show that the polarizability of these structures can vary by a factor
of up to six, depending on the specific values of the HOMO–LUMO gap. To demonstrate this
flexibility in U, Fig. 4.5 also shows the four molecules corresponding to the four quartiles having a
HOMO–LUMO gap of 4± 0.1 eV, selected to correspond to the maximum density of data. For this
specificHOMO–LUMO gap, polarizability changes between 149.9 a.u. and 451.1 a.u. Taking into
account the tenfold enhancement between the polarizability of the free molecule and the absorbed
U′ and using approximate values of ` = 4 D and 3 = 1.5 nm with a full surface coverage, this
would mean that changes in work function could range from 0.9 eV to 1.5 eV. These variations are
larger than are usually achievable by modification of a semiconductor structure or control of surface
coverage [244, 245]. Therefore, our analysis shows that the work function can be, for practical
purposes, freely tailored, even with a very specific design requirement on the HOMO–LUMO gap.

This flexibility is also relevant in the task of designing wavelength-selective detectors, which
would imply a hard constraint on the HOMO–LUMO gap. If Δ�HL and U could not be controlled
independently, then optical design restrictions would directly influence electrochemical behavior.
The decoupling ofΔ�HL and Umeans that the wavelength of detection and the work function can be
independently controlled. Fine-tuning the work functions to achieve matching on the metal-organic
interface at the electrode is crucial for efficiency. Thus, with the existent “freedom of design” in
(Δ�HL, U)-space, we have demonstrated that efficient detection can theoretically be achieved for
any detection wavelength. Alternatively, since the work function can be tailored to match any
detection wavelength, it is also possible to design detectors for different detection ranges having
equivalent electrochemical properties such as sensitivity, dark current, and adhesion behavior as
well as any other properties determined by the work function.

4.1.5 Conclusions

Predictive molecular design is an emerging tool in modern molecular physics and chemistry which
heavily relies on the understanding of relationships between key structural and electronic properties.
Identifying and explaining the correlations between properties requires either a deep physical
understanding or exhaustive data analysis. Herein, we present a comprehensive investigation of the
intricate interplay between theHOMO–LUMO gap and dipole polarizability – two central properties
in the design of molecules with tailored optical properties and intermolecular interactions.

Despite the fact that both quantities have a root in the molecular electronic spectrum, understanding
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their correlation is quite complex. On the one hand, the properties are essentially uncorrelated
when a vast chemical space is taken into account. On the other hand, when examining a small
subset of the chemical compound space with similar functionalities, such as homologous series
of molecules like oligomeric hydrocarbons, we show that the properties can be observed as being
correlated.

To perform a data-driven analysis, we extended the QM7–X database with functional group labels
and accurate polarizabilities to explain the physical cause of this phenomenon. Our results demon-
strate that the atomic composition plays an important role in determining the polarizability, while
the arrangement of these atoms into chemical functional groups dictates the HOMO–LUMO gap.
The physical origin of molecular polarizability was elaborated by studying conceptual models as
well as interpreted with the help of a first order linear atomic additive model. Finally, the “free-
dom of design” arising from the interaction of HOMO–LUMO gap and polarizability was used in
the example of organic photodetectors, demonstrating that the electrochemical properties of such
molecules can be freely tailored even with specific requirements on the optical properties. The
theoretical insights gained from this work can provide the basis for expanding the understanding
of the relationship between HOMO–LUMO gap and polarizability by incorporating additional
descriptors such as molecular size and electronic mobility. Additionally, the proven “freedom of
design” could be applied to the development of new compounds with tailored optical and electronic
properties for use in applications such as organic electronics, sensing, or energy harvesting.

4.1.6 Computational Methods

Generally, molecular design is a multi-property optimization problem and requires an exhaustive
analysis of diverse structure-property and property-property relationships [184, 189]. Here, we
have opted to focus on the two-dimensional property space defined by Δ�HL and U (i.e. (Δ�HL, U)-
space), asmotivated in the introduction (see Sect. 4.1.1). To calculate polarizability, two approaches
were used: (i) the revised linear additive atomic model of Bosque (introduced in Sec. 4.1.3) was
utilized for the prediction of polarizability of the organic photodetector candidates in Sec. 4.1.4
and (ii) density functional perturbation theory (for case studies in Sect. 4.1.3 as well as to analyze
the QM7–X molecules in Sect. 4.1.3). The HOMO–LUMO gap was always obtained from DFT
calculations, either by calculating it ourselves or utilizing the values provided in the QM7–X
dataset.
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Target Molecular Property Space

To perform a purely data-driven study, we utilize the QM7–X dataset [183] containing 42 physic-
ochemical properties of ≈ 4.2 M (equilibrium and non-equilibrium) organic molecules with up
to seven heavy (non-hydrogen) atoms (including C, O, N, S and Cl), spanning a practically
important subset of CCS. Accordingly, a subset of QM7–X considering only one equilibrium
constitutional isomer and stereoisomer per unique molecular graph is selected for further analysis
(≈ 13 k molecules). In QM7–X, the molecular structures were optimized using the third-order
self-consistent charge density-functional tight binding method (DFTB3) [246] supplemented with
a treatment of many-body dispersion/van der Waals interactions via the MBD approach [42, 139].
However, for our studies on polarizability, U was computed directly, using density functional
perturbation theory (DFPT) [214] by means of the PBE0[247] functional as implemented in the
FHI-aims code [123] (version 190205). To ensure the transferability of the values, we store the
molecular (mean) polarizability (denoted as U and simply referred to as polarizability in other parts
of the manuscript)

U =
1
3

(
UGG + UHH + UII

)
, (4.7)

which is independent of the molecular orientation. A second orientation-independent observable,
the polarizability anisotropy (ΔU) is also often reported, defined as

(ΔUUU)2 = 3(U2
GH + U2

GI + U2
HI) +

1
2
((UGG − UHH)2 + (UGG − UII)2 + (UHH − UII)2).

This quantity is mainly used in the description of macromolecules and supramolecular systems,
and since our focus is small organic molecules, we don’t analyze the anisotropy in this manuscript.

Polarizability is known to be sensitive both to the choice of functional and the basis set size [72, 177,
207]. To converge our computational setup, the respective mean polarizabilities were compared
with the highly accurate values of the QM7b database [248, 249]. This comparison ensures an
accurate assessment of the prediction error for the following two reasons: (i) there is a large
overlap between the structures in the QM7b and QM7–X databases, and (ii) QM7b provides highly
accurate U values obtained at the linear-response coupled cluster singles and doubles (LR-CCSD)
level of theory [27, 77]. Then, we computed the polarizabilities of 300 randomly selected structures
of QM7b employing the same DFPT computational setup described above. We have found that
the PBE0 hybrid functional using the default light basis set for all elements amended with three
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additional functions from the tight level predicts Uwith a mean average error of 1.9% and a standard
deviation of 1.1% (see Fig. S 1 of the ESI in [29]). The accuracy of our chosen computational
setup is higher than the common DFT methods, and slightly better than the 2.84% found by Hait
and Head-Gordon [177] for the PBE0 functional, which can be attributed to the fact that our study
is only concerned with organic molecules. Polarizability anisotropy is predicted with a mean
average error of 10.2% with a standard deviation of 5.1%, which is in line with previously reported
values [247, 250]. In general, the mean polarizability is slightly underestimated, whereas the
anisotropy is almost always overestimated by PBE0.

Molecular Classification: Functional Groups

A workflow has been implemented to identify chemical functional groups from the molecular
structure in two steps: firstly, we save the Cartesian coordinates of molecules in a MDL Molfiles
format using the standard implementation in Open Babel [251]. Second, Checkmol [252] is used
to detect functional groups (204 tags) based on the connectivity tree. In total, 61 unique functional
groups were detected for the subset of the ≈ 13 k QM7–X-molecules [183], demonstrating that
the dataset covers a considerable sector of CCS (see Fig. S 2 of the ESI in [29]). Since Open
Babel predicts valencies only based on the distance between pairs of atoms, the functional group
detection scheme is prone to errors for molecules with rare functional groups. Furthermore, the
functional group definitions of Checkmol have significant overlaps, e.g., the molecules detected
as alkylamines are also detected as primary amines. To ensure that these shortcomings do not
influence our conclusions, we base our analyses only on the subset of the 14 k molecules that have
certain functional groups. These groups are chosen to be chemically important, non-overlapping,
and each of these categories contains at least 500 entries. The number of structures that contain
one of these functional groups is 9604. For the analysis in Section 4.1.3, only molecules containing
a single functional group are considered, that is, 1626 entries of our dataset (see Fig. 4.6).
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Figure 4.6: Schematic representation of the different data selection we used. Starting from the full
QM7–X containing non-equilibrium structures and different conformers, we only select a single
equilibrium conformer per entry. Then we select only those molecules that have functional groups
exclusively from our selected list. For analyses where functional group labeling is needed, the
structures that only have a single functional group are used.

Based on these constraints, the following eleven classes of molecules are identified: aldehydes,
carbonitriles, dialkyl ether, enol ether, hydrazones, ketones, oximes, primary alcohols and amines,
as well as secondary alcohols and amines (see labels in Fig. 4.4(a)).

4.2 MolecularPolarizability fromInteractingAtoms in aMolecule

In Sect. 4.1 it was shown that the polarizability of small organicmolecules can bewell approximated
by considering contributions from their constituent atoms. A simple linear combination of atomic
values as a first-order approximation was also presented in Sect. 4.1.3. This model can have good
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performance for small molecules, but it is limited by not accounting for the chemical environment.
This Section will introduce a model based on self-consistently coupled atomic quantum Drude
oscillator (QDO) capable of capturing both short-range environment as well as long-range geomet-
rical effects. Building on the four-dimensional scaling law and the spatial properties of QDOs, this
model efficiently captures both the magnitude and the anisotropy of the dipole polarizability for
small organic molecules.

The effect of the chemical environment can be captured by using a self-consistent screening for
response of atoms represented as dipoles. The name of this approach refers to the fact that screened
atomic polarizabilities are obtained by using a Dyson-like self-consistent screening equation [112,
253]

UUUSCS
9 (l) = UUU0

9 (l) − UUU0
9 (l)

∑
:≠ 9

TTTUUUSCS
: (l) . (4.8)

Here, UUU0
9
(l) is the non-interacting polarizability, whereas the dipole propagator is calculated from

an interaction potential asTTT = ∇∇∇''' 9 ⊗∇∇∇''':E(A 9 : ). Themolecular polarizability can then be expressed
as a sum of atomic polarizabilities (including the screening effect)

UUU(l) =
∑

9∈atoms
UUUSCS
9 (l) . (4.9)

Eqs. (4.8)-(4.9) do not specify the source of the atomic polarizability. In principle, one could obtain
these values from the fitting procedure of Sect. 4.1.3. Alternatively, Mayer et al. considered them
as input parameters of the interacting model itself [41]. The approach I am using in this Section,
which is also used in the calculation of dispersion energies in the MBD@rsSCS method, relies
on partitioning molecular densities to the constituent atoms (although a range separation step is
introduced in that method for the self-consistent screening procedure). The advantage of this way
is that the chemical environment is already taken into account up to a certain degree. The most
common partitioning method is to rescale free atomic polarizabilities with Hirshfeld ratios [35]

UUU0
9 (l) = UUU

0,free
9
(l)

∫
d3AAAF 9 (AAA)d(AAA)A3∫

d3AAAdfree
9
(AAA)A3

, (4.10)

where d(AAA) is the charge density from the quantum mechanical calculation and dfree
9
(AAA) is the
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density of a free (neutral) atom 9 . Hirshfeld weights F 9 (AAA) are obtained from Hirshfeld ratios

F 9 (AAA) =
d 9 (AAA)∑
: d: (AAA)

. (4.11)

With the individual atomic parameters determined, the interaction between atoms is obtained by
assuming that the interaction potential corresponds to the Coulomb coupling between two Gaussian
charge densities (as in the case of QDOs)

)GG
01 (r, f) =

m2

mA0mA1

erf (Z)
A

=
(
erf (Z) − Θ(Z)

)
)01 (r) + 2Z2Θ(Z) A0A1

A5 ,

where Θ(Z) = 2Z
√
c

e−Z
2
, Z =

A√
f2
9
+ f2

:

.

(4.12)

Finally, the connection between the individual atomic parameters and the interaction length f can
be obtained from the limit of the interaction tensor with 9 → : [41]

1
UUU0
:

= −TTT:,: =
√

2
c

f3
:

3
. (4.13)

Here, it should be highlighted that while the analysis I present is novel, the model is essentially the
same as the zero-frequency limit of the CARMA model described by Gobre [46, 47].

In the following, all analysis will be performed on the equilibrium structures of theQM7–X dataset
(see Ref. [183]), which contains around 42000 equilibrium conformers of small organic molecules.
The Hirshfeld ratios, on which the SCS method relies, were taken from the published database1.
Dipole polarizabilities were obtained using the density functional perturbation theory (DFPT)
implementation in FHI-aims code using the PBE0 hybrid functional and an augmented version of
the light basis set, as described in Sect. 4.1.6 and Ref. [29], where it was also reported that this
computational setup provides sub-2% accuracy with respect to reference data from coupled cluster
calculations. The SCS calculations were performed by using a modified version of the Python

1Due to limitations of the FHI-aims code, the Hirshfeld ratios in QM7–X [183] were obtained with PBE free
atomic and PBE0 atom-in-molecule data. To ensure consistent PBE0 accuracy, these ratios were multiplied with a
correction factor obtained from the PBE0 and PBE free atomic volumes for each element. This amounts to an increase
of about 5%, depending on the atomic composition of each entry.
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interface of libMBD [254], turning off the range separation that is otherwise employed for the
calculation of interaction energies.

It was concluded in Ref. [19] as well as in Sect. 3.1.1 that the Hirshfeld ratios of Eq. (4.10) need
to be re-scaled by raising them to the (4/3)rd power. Therefore, the polarizability within this
approach, in what follows, called SCS43, is calculated as

UUU0
9 (l) = UUU

0,free
9
(l) ©«

∫
d3AAAF 9 (AAA)d(AAA)A3∫

d3AAAdfree
9
(AAA)A3

ª®¬
4/3

. (4.14)

I have also evaluated two other prediction schemes, called TS and TS43, where the re-scaled
atomic polarizabilities are directly summed, skipping the SCS step of Eq. (4.8). To compare the
different methods, the mean absolute percentage error (MAPE) and the skewness (g) of the data
were calculated, which are defined as

MAPE =
1
=

∑
8

��Upred,i − UDFPT
��

UDFPT
;

6 =
<3

<
3/2
2

, <8 =
1
#

#∑
==1
(G − G)8 .

(4.15)

The mean absolute percentage errors of the methods “TS”, “TS43”, and “SCS43” are 21.12%,
12.38%, and 17.92%, with the skewness values −0.88, −1.13 and 0.11, respectively. The errors for
the methods “TS“ and “SCS43“ can also be visually observed in Fig. 4.7, with the anisotropy of
each entry represented by the color of the individual points. The anisotropy values in Figs. 4.7-4.9
are obtained from the DFPT results with Eq. 4.8 (repeated here for clarity)

(ΔUUU)2 = 3(U2
GH + U2

GI + U2
HI) +

1
2
((UGG − UHH)2 + (UGG − UII)2 + (UHH − UII)2).

For best results, a method should fulfill two criteria: the lowest percentage errors measured by
MAPE as well as a low skewness. The accuracy of the values obtained can be compared with
commonly used DFT methods, which is between 2.5% and 3.8% [177] MAPE. Compared to
these values, even the best scheme is about three times less accurate. However, it should be
kept in mind that predicting the polarizability with atoms-in-molecules methods requires just a
ground-state single-point calculation, circumventing the difficulties associated with finite-field and
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Figure 4.7: Comparing the error for the trace of dipole polarizabilities predicted by the “TS”
and “SCS43” methods versus PBE0 reference values on the QM7–X dataset of small organic
molecules [183]. The polarizability anisotropy of each molecule, obtained with the PBE0 func-
tional, is also shown.

perturbative DFT calculations. Remarkably, while the errors of all the methods considered stem
from an overestimation of polarizability, accounting for the four-dimensional scaling of the dipole
polarizability seems to be essential in reducing this overestimation. In particular, the error of the
“TS43” scheme is almost two times less than that of the “TS” scheme (21.12% vs. 12.38%),
underlining the importance of relying on the correct scaling law.

Skewness measures the “symmetricity” of the distribution. Anymethod for prediction of molecular
polarizabilities which possesses low skewness, even if it systematically over- or underestimates
the corresponding quantity, provides one with the opportunity to obtain more accurate results
by a simple rescaling the initially predicted values, as centrally distributed around the mean
value. The main difference between “TS” methods and the “SCS43” approach is captured by their
distinct skewness, showing that systematic error can be essentially eliminated using self-consistent
screening and properly adjusting the mean value of the distribution. The difference in skewness is
visualized in Fig. 4.8.

The source of the skewness can be understood by considering the interplay between the prediction
error and the polarizability anisotropy, either by observing the color distribution in Fig. 4.7 or
directly the error as a function of anisotropy in Fig. 4.9. From these graphs, it can be concluded
that the “TS” methods cannot adequately account for the polarizability anisotropy, since obviously
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Figure 4.8: The distribution of the errors in the polarizability prediction of the “TS“ and “SCS43“
methods versus PBE0 reference values on the QM7–X dataset of small organic molecules [183].

the error and the anisotropy strength are strongly correlated. The systematic overestimation for the
methods without the SCS step is explained by the relatively large number of points having lower
anisotropy in polarizability stemming from the corresponding molecular geometry. This is due
to the composition of the dataset, as it is limited by the total number of atoms in the molecules,
meaning that branched and thereforemore isotropic structures are overrepresented. This inadequacy
of the “TS” schemes can be understood by taking into account that the molecular polarizability is
built up just as a sum of atomic counterparts, with the individual contributions based on atomic
volumes as + =

∫
A3d(AAA) d3AAA. Spatial contributions to this integral rapidly decrease when moving

away from the atomic centers, meaning that long-range effects are not properly taken into account.
Accounting for such long-range interactions via self-consistent screening leads to a method with
an error independent of the polarizability anisotropy, as demonstrated by Fig. 4.9.

Twomain shortcomings of this approach lie within the parametrization of the individual oscillators.
In particular, localized oscillators could not adequately describe structures where the charge density
is highly delocalized, as in the case of carbon nanostructures, where polarization effects must be
taken into account by assigning a charge to each oscillator, in addition to the polarizability [112].
Moreover, the localization scheme based on Hirshfeld partitioning cannot adequately account for
the contribution of electron correlation to polarizability, as outlined in Sect. 3.1.2. Devising a
scheme that accounts for these effects would be highly impactful in the efficient modeling of the
response properties of matter.
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Figure 4.9: Error in the predicted polarizability values of the “TS” and “SCS43” methods versus
PBE0 reference values shown as a function of polarizability anisotropy, obtained with the PBE0
functional, on the QM7–X dataset of small organic molecules [183].

As outlined in this section, polarizabilities of small organic molecules can be approximated with
good accuracy and without artificial skewness by means of the self-consistent screening procedure,
when accompanied with the four-dimensional scaling of the polarizability applied to atoms in a
molecule. This approach, combining the screening obtained from theQDOmodel with the quantum
mechanical scaling law of polarizability delivers a model, which is useful not only to calculate
interaction energieswithin theMBD framework but also to deeply understand the response functions
of molecules and materials starting from the corresponding atomistic data.

4.3 Conclusion and Outlook

Polarizability of small organic molecules was discussed in this chapter, starting with examining
the empirical correlations of this quantity with other molecular descriptors. With a data-driven
approach based on an extended QM7–X dataset, it was shown that there is no general correlation
between the molecular polarizability and theHOMO–LUMO gap, in contrast to a common intuitive
assumption (for instance, see Chapter 12 in Ref. [96]), and the most reasonable way to determine
the polarizability of molecules should rely on the analysis of their atomic composition.

This finding suggests that the polarizability of organic molecules can be discussed on the basis of an
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atom-in-molecule approach. Accordingly, a model where polarizability is approximated through
electronic response of dipole-coupled atoms was examined. As a result, it is found that relatively
accurate polarizabilities can be obtained using Hirshfeld partitioning to define individual atomic
densities and rescaling free atomic polarizabilities using the quantum mechanical scaling law.

While this approach of interacting atomic oscillators seems to provide accurate polarizabilities, it
still neglects some important physical effects. In particular, it is based on the coarse-grained atomic
contributions, being limited by both the choice of the partitioning scheme as well as the fact that
localized schemes cannot account for non-local effects, such as charge-flow contributions. Thus,
the next chapter focuses on polarizability as a non-local quantity, enabling one to define spatially
resolved contributions to the total polarizability without the need of a predefined level of resolution.
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5. Polarizability as a Non-Local Quantity

The new results contained in this Chapter are still unpublished.

One of the main motivations of this thesis is to construct a generally applicable non-expanded
many-body dispersion method, which - as was shown before - needs to be based on non-local
response functions. In principle, two physical quantities can be used as a basis for such an
approach: susceptibility, which measures the change of electron density to a perturbing potential,
or polarizability, measuring the change of polarization density to a perturbing external electric field.
While these two functions, in principle, contain the same physics, there is a practical difference
between them: integrating the non-local polarizability over the full space will yield the dipole
polarizability of the system, whereas non-local susceptibility has to integrate to zero if charge is
conserved. The significance of this fundamental difference is that coarse-grained models are better
suited for the non-local polarizability, as first pointed out by Dobson [10].

As will be elaborated in Sect. 5.1, the non-local polarizability can be expressed as a polarization-
polarization correlation function [63]

U8 9 (AAA, AAA′, l) =
∑
=≠0

l=0

(
〈0|%̂8 (r) |=〉 〈=|%̂ 9 (r′) |0〉 + cc.

)
l2
=0 − l2

. (5.1)

Sect. 5.2 contains a discussion of this polarization operator, and Sect. 5.3 shows the application of
the formalism to model systems. The correlation energy, connected to the dispersion interaction
between � and �, was already hinted at in the introduction of Fig. 1.2 to be

Δ� = − 1
2c

∫ ∞

0
da

∫
U�XU (AAA, AAA′′′, 8a))UV (AAA′′′, AAA′′)U�VW (AAA′′, AAA′, 8a))WX (AAA′, AAA) d3AAA d3AAA′ d3AAA′′ d3AAA′′′ .

(5.2)

Within second order perturbation theory, Eq. (5.2) is exact insofar as not relying on the multipole
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expansion. This fact can be shown either by considering that any multipolar moment can be
expressed from the non-local polarizability (as demonstrated in [62]), or by using the multipole
expansion of the polarization operator (see details in Sect. 5.2, written here just for an one-centered
single-electron system)

P(r) = @
(
A8A8A8X(AAA) −

(A8A8A8 · ∇∇∇)2
2!

X(AAA) + ...
)

(5.3)

The first term of this expansion is the dipole term

Pd(r) = @A8A8A8X(AAA) . (5.4)

which, together with the connection between the polarization operator and polarizability leads to
(with real wavefunctions)

UUU(r, r′)3 = 2
∑
=≠0

〈0|P̂3 (r) |=〉 ⊗ 〈=|P̂3 (r′) |0〉
�= − �0

= 2@2
∑
=≠0

〈0|A8A8A8X(AAA) |=〉 ⊗ 〈=|A8A8A8X(A′A′A′) |0〉
�= − �0

. (5.5)

The individual integrals in the numerator are

〈0|A8A8A8X(AAA) |=〉 =
∫
Ψ0(A8A8A8)A8A8A8Ψ= (A8A8A8)X(AAA) dA8A8A8 = X(AAA) 〈0|A8A8A8 |=〉 , (5.6)

meaning that the dipole contribution to the non-local polarizability is given by

UUU(r, r′)3 = 2@2X(AAA)X(A′A′A′)
∑
=≠0

〈0|A8A8A8 |=〉 ⊗ 〈=|A8A8A8 |0〉
�= − �0

= 2@2X(AAA)2X(A′A′A′)UUU , (5.7)

corresponding to the coarse-grained expression of the dipole polarizability, comparable with the
MBD ansatz [253] in the one-center limit.

The aim of this Chapter is to evaluate the non-local polarizability for some model systems. On this
way, non-local polarizability will first be contrasted with susceptibility in Sect. 5.1. After showing
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that non-local polarizability should be expressed via the polarization operator, the properties of this
object will be discussed in Sect. 5.2, which will be used to elaborate the non-local polarizabilities
in Sect. 5.3.

While most of this Chapter contains results obtained by me, discussions with Dr. Péter Szabó, Dr.
Matteo Gori, and Dr. Dmitry Fedorov were essential in developing them.

5.1 Connecting Non-local Susceptibility and Polarizability

To derive the connection between polarizability UUU(r, r′) and susceptibility j(r, r′), one starts
with the definition of these quantities as general linear response functions [255]. The dielectric
susceptibility will relate the change of the charge density when an external potential is applied,
while the polarizability will relate the change in polarization with an applied perturbing field [256]
(note that non-local polarizability is a tensor field connecting two vector quantities)

Xd(r) =
∫
+

j(r, r′)Xq(r′) d3r′ (5.8)

and

XP(r) =
∫
+

UUU(r, r′)XE(r′) d3r′ . (5.9)

In addition to these equations, Gauss’s law can be used, connecting the electron density to the
divergence of the polarization density [11] (omitting the delta X symbol from now on)

−d(r) = ∇∇∇A · P(r) − dtrue(AAA) . (5.10)

In Eq. (5.10), dtrue(AAA) represents the electron density due to the total charge of a system, which
is zero for neutral atoms and molecules – the polarization field is only defined for the part of the
charge density that is offset by the nuclear charge.

Taking the divergence of Eq. (5.9) and using Eq. (5.10) and the fact that the divergence is taken
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with respect to a variable different from the integration, one obtains

d(r) = −∇∇∇A ·
∫
+

UUU(r, r′)E(r′) d3r′ = −
∫
+

∇∇∇A ·
(
UUU(r, r′)E(r′)

)
d3r′ . (5.11)

Let us now evaluate the divergence of a product between a tensor field and a vector field. However,
since the vector field is not defined in the same space as the divergence operator (the electric field is
a function of r′, whereas we take the divergence with respect to r), it can be regarded as a constant
and, therefore, factored out.

∫
+

∇∇∇A ·
(
UUU(r, r′)E(r′)

)
d3r′ =

∫
+

(
∇∇∇A · UUU(r, r′)

)
· E(r′) d3r′ . (5.12)

The next step is to note that the electric field can always be written as the gradient of an electric
potential: E(r) = −∇∇∇k(r). Thus, we have

d(r) =
∫
+

(
∇∇∇A · UUU(r, r′)

)
· ∇∇∇A ′q(r′) d3r′ . (5.13)

To proceed further, we look at an identity of the divergence operator when applied to a product of
a scalar and a vector field (note that the divergence of the non-local polarizability tensor is just a
vector in r′)

∇∇∇A ′ · (qA) = q∇∇∇A ′ · A + (∇∇∇A ′q) · A . (5.14)

Integrating both sides of this equation and using the Gauss-Ostrogradsky theorem for the left side
yields

∯
m+

(qA) · nA ′ df =
∫
+

q∇∇∇A ′ · A dV +
∫
+

(∇∇∇A ′q) · A dV . (5.15)

In our case, the integration region + is the full space, and integrating over the surface of the full
space (by taking, for example, a sphere with radius going to infinity) gives zero for functions that
go to zero at infinity. So, we can conclude that the right-hand side of Eq. (5.13) can be recast as
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∫
+

(
∇∇∇A · UUU(r, r′)

)
· ∇∇∇A ′q(r′) d3r′ = −

∫
+

(
∇∇∇A ′ · ∇∇∇A · UUU(r, r′)

)
q(r′) d3r′ . (5.16)

Comparing our result with Eq. (5.8), we obtain

j(r, r′) = −∇∇∇A ′ · ∇∇∇A · UUU(r, r′) . (5.17)

This operation is expressed in component form as

j(r, r′) = −
∑
8 9

m2

mA8mA
′
9

U8 9 (AAA, AAA′) . (5.18)

Finally, if we consider that the non-local susceptibility is understood as a density-density correla-
tion function expressed via operators (see Sect. 5.2.1 for the transition between the macroscopic
quantities and their corresponding operators)

j(r, r′) = 2
∑
=≠0

〈0| d̂(r) |=〉 〈=| d̂(r′) |0〉
�= − �0

, (5.19)

then, utilizing Eq. (5.10) we find that non-local polarizability will act as a polarization-polarization
correlation function

U8 9 (AAA, AAA′) = 2
∑
=≠0

〈0|%̂8 (r) |=〉 〈=|%̂ 9 (r′) |0〉
�= − �0

. (5.20)

The expression for the dispersion energy using the non-local polarizability of Eq. (5.2) arises
similarly, by starting from the non-local susceptibility (which is better known for expressing
correlation energies [257]) similarly, by starting from a known expression utilizing the non-local
susceptibility

Δ� = − 1
2c

∫ ∞

0
da

∫
j� (AAA, AAA′′′, 8a)j� (AAA′′, AAA′, 8a)
|r − r′′| |r′ − r′′′| d3AAA d3AAA′ d3AAA′′ d3AAA′′′ , (5.21)
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and utilizing the connection between the two response functions as above.

In conclusion, understanding the theory of non-local polarizability requires the discussion of
polarization density as an operator. Before doing this in the next Section, however, it should
be pointed out that the non-local polarizability, even though it was obtained by “smearing” the
dipole polarizability, contains all higher order response properties [62]. Therefore, a model of
intermolecular interactions based directly on the non-local polarizability will not suffer from the
errors of the multipole expansion.

5.2 Polarization Operator for Isolated Systems

5.2.1 Electron Density and Electric Polarization as Operators

The non-local response quantities introduced in Sect. 5.1 come from electrodynamics and can
be used equally in classical and quantum mechanical contexts. A simple quantum mechanical
argument, based on second-order perturbation theory, was presented in [4], where it is shown that
a perturbing potential + (AAA) only at position s (that is, + (AAA) = +0X(AAA − s)), for which the perturbing
Hamiltonian is given as H ′ =

∫
+
+0X(AAA − s)d(AAA) dAAA = +0d(s), results in a first-order shift in the

charge density

Δd(AAA) = −+0
〈0|X(AAA8 − s) |=〉 〈=|X(AAA8 − AAA) |0〉 + 22.

�= − �0
, (5.22)

which is written as

Δd(AAA) = −
∫
+

+ (AAA′)j(AAA, AAA′) d3AAA′ = −
∫
+

+0X(AAA′ − s)j(AAA, AAA′) d3AAA′ , (5.23)

thereby identifying the non-local susceptibility (often referred to as charge density susceptibility)
to be equal to the form in Eq. (5.21) for real wavefunctions.

The polarizability operator P̂(r) was introduced in Eq. (5.20) based on the analogy of response
functions in Eq. (5.21) and Eq. (5.20), while the connection between the two quantities was made
on the level of expectation values in Eq. (5.10). To satisfy the constraint on the expectation values,
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we postulate that the same equation holds between the operators

−d̂(r) = ∇∇∇ · P̂(r) . (5.24)

Formally, both d̂(r) and P̂(r) could be written as belonging to a class of operators of the form

$̂r: (r) = 5̂ (r) ⊗
#∑
==1

�̂(=≠:) , (5.25)

where we act with the identity operator on all particles except the :th, for which we act on with an
arbitrary one-electron operator 5̂ . All the dependence of the external parameters is carried in 5̂ . In
the case of the charge density, we can write this operator as

d̂r: (r) = |r〉 〈r| ⊗
#∑
==1

�̂(=≠:) . (5.26)

An alternative way to write Eq. (5.26) is using the Dirac delta function.

d̂r: (r) = X(r − rk)
#∑
==1

�̂(=≠:) , (5.27)

where it is clear that the operator 5 acts as multiplication with the Dirac delta. Since all dependence
on the real space coordinate A is contained in a multiplicative term in Eq. (5.27), without loss of
generality, we can also write the polarization operator for a time-independent system as

P̂r: (r) = Prk (r)
#∑
==1

�̂(=≠:) , (5.28)

with all the real space dependence is in a multiplicative function %rk (r). To satisfy Eq. (5.24), this
function will need to satisfy the condition

∇∇∇ · Prk (r) = −X(r − rk) . (5.29)
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The solution of Eq. (5.29), together with Eq. (5.28), provides us with a consistent definition of
the polarization operator. A possible solution is obtained considering the multipole expansion of
the Dirac delta function [258–260]. In the most general form, the multipole expansion along an
arbitrary center R can proceed as

d(r) =
∑
:

@:

∞∑
==0

1
=!
(−(rk − R) · ∇∇∇)=X(r − R) . (5.30)

If we consider a system with net zero charge, then the = = 0 term of Eq. (5.30) gives zero. The
solution of Eq. (5.29) for a neutral system with this expansion in mind is given as

P(r) =
∑
:

@: (rk − R)
(
X(r − R) − 1

2!
(rk − R) · ∇∇∇X(r − R) + 1

3!
((rk − R) · ∇∇∇)2X(r − R) − ...

)
.

(5.31)
This can be compared with the Taylor expansion of the function∑

:

@: (rk − R)X(r − rk) =
∑
:

@: (rk − R)
∞∑
==0

1
=!
(−(rk − R) · ∇∇∇)=X(r − R) , (5.32)

where we can realize that each term is off by a factor of 1/=. This can be included using the integral
identity

∫ 1
0 _=−1 d_ = 1/=, giving us the expression [258, 261]

Prk (r) = −
∑
:

@: (rk − R)
∫ 1

0
X(r − R − _(rk − R)) d_ . (5.33)

Note once more that the polarization operator, if defined this way, does not include the part of the
charge density that is due to the net charge of the system; this true density is taken into account in
Eq. (5.10).

The simplest application of Eq. (5.33) is the case of the one center one electron system, where we
take the center of charge to be the origin. Then, we have

P̂r0 (r) = −r0

∫ 1

0
X(r − _r0) d_ , (5.34)

and the polarization density reads
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〈Ψ|P̂r0 (r) |Ψ〉 = P(r) = −@
∫

r0

∫ 1

0
X(r − _r0) d_ |Ψ(r0) |2 dr0 . (5.35)

We can eliminate one of the integrals by considering the transformation r′ = _r0 to give

P(r) = −@
∫
+

r′

_

∫ 1

0
X(r − r′) d_

�����Ψ (
r′

_

)�����2 _−3 d3r′ = −@r
∫ 1

0

�����Ψ (
r
_

)�����2 _−4 d_ . (5.36)

Note that the factor _−3 appears due to having been integrated in the 3D space over d3r0. For
different dimensions, this factor is different: for an #-dimensional space, one gets _−# from d#r0.
The scaling of r is also best treated in Cartesian coordinates where each component is scaled in
the same way. In spherical coordinates only the radial component is scaled, since every other
component is defined via ratios of the Cartesian ones.

5.2.2 Polarization Density of the 1D Quantum Drude Oscillator

If one considers a 1D quantum mechanical system, such as the 1D Drude oscillator, then Gauss’s
equation will have a straightforward solution

m%(G)
mG

= −d(G) =⇒ %(G) = −
∫ G

d(H) dH . (5.37)

This means that one can directly calculate the polarization densities, without the need to resort to
the operator formalism developed for the general case. The ground-state polarization density for
the 1D QDO is given by

%00(G) = −
@

2
erf (0G) , (5.38)

with 0 =
√
<l
ℏ

scaling the coordinate of the QDO, and the error function defined as

erf (G) = 2
√
c

∫ G

0
exp(−C2) dC . (5.39)
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Note that the polarization density, as expressed by Eq. (5.38), is an even function, so the integral of
the function gives zero, in accordance with the matrix element 〈0|Ĝ |0〉. To obtain the dipole of the
system, we can get the polarization density in a constant external electric field � , since the exact
wavefunction is known. The polarization density in an external field is

%00(G) = −
@

2
erf (0(G − U�/@)) , (5.40)

where U is the polarizability of the Drude oscillator, which is also the value of the integral∫ ∞
0 %(G) dG. This is shown schematically in Fig. 5.1.

Figure 5.1: Polarization den-
sity of the ground state of
QDO (< = ℏ = l = @ = 1)
with and without an external
field of strength |� | = 1 a.u.

To evaluate the transition polarization densities, it is helpful to consider the following identity

dΨ= (0G)
dG

=
0
√

2

(√
=Ψ=−1(0G) −

√
= + 1Ψ=+1(0G)

)
. (5.41)

Using the definition of the transition density matrix, d=< = 〈Ψ= |Ψ<〉, we can express the transition
polarization density matrix as

%0,= (0G) =
d0,=−1(0G)√

2=0
. (5.42)
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Equation (5.42) provides a direct formula for evaluating any transition polarization for the 1DDrude
oscillator. Note that by deriving this formula, we relied on the fact that one of the states in question
is the ground state, and such a simple formula will not be valid for exited-excited transitions.

5.2.3 Polarization Density of the Hydrogen Atom

While it is now well established that quantum Drude oscillators are good models for atomic
response, it is nevertheless a natural development to evaluate the polarization density and the
non-local polarizability on real atoms. In the realm of analytical derivations, this is only possible
for the hydrogen atom, since the lack of electron correlation leads to analytical expressions for
the wavefunctions of all states for the free hydrogen. To discuss the polarization density of the
hydrogen atom, one needs to evaluate Eq. (5.36) directly with the ground state density to get (see
also [258])

P1B,1B (r) = −
@Aer

c03

∫ 1

0
4−2A/_0_−4 d_ =

−@er

4cA2 4
−2A/0

(
1 + 2(A/0) + 2(A/0)2

)
. (5.43)

It is interesting to note that this vector field is completely radial, having zero curl. The divergence
of the field is

∇∇∇ · P1B,1B (r) =
1
A2
m

mA

−@
4c
4−2A/0

(
1 + 2(A/0) + 2(A/0)2

)
=

@

c03 4
−2A/0 , (5.44)

which gives us back the correct electron density, in agreement with Eq. (5.24).

Some additional interesting properties can be observed of P1B,1B (r) when plotting the radial density
of the contribution to the 3D integral (defined as er ·P1B,1B (r)4cA2, similar to the probability density
often defined for the hydrogen atom when calculating the Bohr radius). First, the function has an
inflection point at A = 0, the Bohr radius, due to the connection between the electron density and the
polarization density field. Second, the function decays relatively quickly within the van der Waals
radius: the value of the function falls exactly to 0.05% at 3.148 a.u., meaning that almost 98%, of
the function is found within the van der Waals radius of hydrogen. The ground-state polarization
field and its density are shown in Fig. 5.2.

The polarization operator has the advantage that mixed-state, or transition polarization densities
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Figure 5.2: Polarization field and the density of the polarization field in the ground state of the
hydrogen atom, with the Bohr and van der Waals radii marked.

can also be evaluated. For example, the transition polarization density between the 1B ground state
and an excited 2B state is given by the field

P1B,2B (r) = −
A4
− 3A

200

6
√

2c03
0

er . (5.45)

For a more detailed analysis of the polarization density of the hydrogen atom, see [258]. Note that
by Eq. (5.34) the polarization density, as a vector field, will only have a radial component when
expressed in spherical coordinates. However, for most of the transition fields, this radial magnitude
will have an angular dependence, resulting in the vector field not being irrotational.

In discussing the transition polarization densities, it is helpful to consider the wavefunction of the
hydrogen atom as

Ψ=,;,< (A, \, q) = #
D=,; (A)
A

.;,< (\, q) , (5.46)

where # is the proper normalizing factor, D(A) is the radial solution to the corresponding Sturm-
Liouville problem of the central potential and all angular dependence is contained in the spherical
harmonics .;,<. With this expression, the polarization field reduces to
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〈=;< |P(r) |=′;′<′〉 = er#=,;,<#=′,; ′,<′.;,< (\, q).; ′,<′ (\, q)r
∫ 1

0
D=,; (r/_)D=′,; ′ (r/_)_−4 d_ .

(5.47)

Equation (5.47) will be used in Sect. 5.2.4 in comparing the hydrogen atom with the isotropic har-
monic oscillator, but since the wavefunction of the hydrogen atom is rather simple, full expressions
for the ground state of the hydrogen atom between the 1B and the 2B, 2?, 3B, 3? and 33 orbitals
are presented here with all possible magnetic quantum numbers. These functions could be used
to systematically approximate the non-local polarizability density by truncating the perturbative
summation in Eq. (5.20).

P1B,1B (r) =
4
− 2A
00

(
02

0 + 200A + 2A2
)

4c02
0A

2
er (5.48)

P1B,2B (r) = −
A4
− 3A

200

6
√

2c03
0

er (5.49)

P1B,2?−1 (r) =

(
1603

0 + 2402
0A + 1800A

2 + 9A3
)

sin(\)4−
3A

200
−8q

108c03
0A

2
er (5.50)

P1B,2?0 (r) =
4
− 3A

200

(
1603

0 + 2402
0A + 1800A

2 + 9A3
)

cos(\)

54
√

2c03
0A

2
er (5.51)

P1B,2?+1 (r) = −

(
1603

0 + 2402
0A + 1800A

2 + 9A3
)

sin(\)4−
3A

200
+8q

108c03
0A

2
er (5.52)

P1B,3B (r) =
A4
− 4A

300 (A − 600)
54
√

3c04
0

er (5.53)
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P1B,3?−1 (r) =

(
24304

0 + 32403
0A + 21602

0A
2 + 9600A

3 − 32A4
)

sin(\)4−
4A

300
−8q

3456c04
0A

2
er (5.54)

P1B,3?0 (r) =
4
− 4A

300

(
24304

0 + 32403
0A + 21602

0A
2 + 9600A

3 − 32A4
)

cos(\)

1728
√

2c04
0A

2
er (5.55)

P1B,3?+1 (r) = −

(
24304

0 + 32403
0A + 21602

0A
2 + 9600A

3 − 32A4
)

sin(\)4−
4A

300
+8q

3456c04
0A

2
er (5.56)

P1B,33−2 (r) =

(
24304

0 + 32403
0A + 21602

0A
2 + 9600A

3 + 32A4
)

sin2(\)4−
4A

300
−28q

6912c04
0A

2
er (5.57)

P1B,33−1 (r) =

(
24304

0 + 32403
0A + 21602

0A
2 + 9600A

3 + 32A4
)

sin(2\)4−
4A

300
−8q

6912c04
0A

2
er (5.58)

P1B,330 (r) =
4
− 4A

300

(
24304

0 + 32403
0A + 21602

0A
2 + 9600A

3 + 32A4
)
(3 cos(2\) + 1)

6912
√

6c04
0A

2
er (5.59)

P1B,33+1 (r) = −

(
24304

0 + 32403
0A + 21602

0A
2 + 9600A

3 + 32A4
)

sin(2\)4−
4A

300
+8q

6912c04
0A

2
er (5.60)

P1B,33+2 (r) =

(
24304

0 + 32403
0A + 21602

0A
2 + 9600A

3 + 32A4
)

sin2(\)4−
4A

300
+28q

6912c04
0A

2
er (5.61)

As per construction of the polarization density operator, the integrals of the field give the corre-
sponding transition dipole matrix elements, e.g.
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Free hydrogen atom 
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Figure 5.3: Transition polarization density fields between the ground state and the first few B states
of the hydrogen atom.

∫
+

P=<,=′<′ (r) d3AAA = 〈=< |ÂAA |=′<′〉 . (5.62)

It is known for the case of hydrogen atom that the transition dipole matrix elements between the
ground state and higher excited states slowly converge to zero, leading to the fact that one needs to
account for rather large excitations for calculating the polarizability, including 18.6% contribution
from the continuum for dipole polarizability [81]. This convergence with respect to = integral can
be implied from Fig. 5.3, showing that the transition polarization fields between the ground state
and the higher excited B states qualitatively have the same shape, but decrease in magnitude.

5.2.4 Polarization Density of the 3D Isotropic Drude Oscillator

Apart from the hydrogen atom presented in Sect. 5.2.3 above, the 3-dimensional isotropic harmonic
oscillator is also an example of a model system having a solvable central potential. In general, the
N-dimensional quantum harmonic oscillator wavefunction can be expressed by the product of N
1-dimensional oscillators in Cartesian coordinates, with the total energy being
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� =

#∑
8=1
(=8 + 0.5)ℏl8 , (5.63)

where =8 and l8 are the quantum number and frequency of the independent Cartesian oscillators.
If all frequencies are equal in a 3D oscillator, it is possible to directly solve the radial equation
instead of the Cartesian ones, giving a wavefunction (cfi. Eq. (5.46))

Ψ:,;,< (A, \, q) = #
D:,; (A)
A

.;,< (\, q) , (5.64)

with the corresponding energies being

� = (: + ; + 1.5)ℏl . (5.65)

Further expanding the similarity between the hydrogen atom and the harmonic oscillator, we can
express the radial part of the solution for both systems (the =; subscript refers to the hydrogen atom,
the :; to the isotropic harmonic oscillator) using the confluent hypergeometric function � as [262]

D=; (A) = A ;+1� (−= + ; + 1, 2; + 2, 2A/=) exp (−A/=) ,
D:; (A) = A ;+1� (−=, ; + 3/2, A2) exp (−A2/2) .

(5.66)

The allowed eigenstates are also different for the two systems, with the = quantum number being a
positive integer for the hydrogen atom and : being a non-negative integer for the oscillator; and ;
can take any positive integer value less than = in the case of the hydrogen atom but : and ; must
also have the same parity for the isotropic oscillator; see Fig. 5.4 to compare the first few allowed
states.

Combining the discussion of the allowed states above with the observation that, based on Eq. (5.47),
only the radial part of the polarization field will be different between the hydrogen atom and the
corresponding states of the isotropic 3D oscillator, it can be concluded that the two systems can be
compared based on transitions between corresponding states. Such corresponding states are, for
example, hydrogenic 1s→ 2p with the oscillator 00→ 11, or 1s→ 3s with 00→ 20.
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Hydrogen atom Harmonic oscillator

1s

2s

3s 3p

2p

3d

4s 4p 4d 4f 3p 3f

2s 2d

1p

0s

Figure 5.4: Comparison of the allowed states of the hydrogen atom and the three-dimensional
isotropic oscillator. Note that while the energy spectrum of the oscillator is equidistant in =, this is
not the case for hydrogen atom, so the Figure is not representative of the energy difference between
the states [263]

The transition polarization density curves of the normalized radial wavefunctions of some corre-
sponding states are shown in Fig. 5.5, with the normalized radial wavefunctions defined as

* (A) = D(A)/A
4c2

∫ ∞
0 (D(A)/A)2A2 dA

. (5.67)

Remarkably, the polarization fields in the ground state of the two systems are qualitatively similar,
but the transition fields from the ground state to different excited states are different, even when the
corresponding transitions are compared. This difference eventually leads to a qualitatively different
non-local polarizability for the two systems.

5.2.5 Different Expressions for Polarization Operators

We have seen in Sect. 5.2.1 one definition of the polarization operator (cfi. [258]) to be
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Figure 5.5: Comparison of the normalized radial transition polarization density fields between
corresponding states of the hydrogen atom and the 3D isotropic quantum harmonic oscillator.

Prk (r) = −rk

∫ 1

0
X(r − _rk) d_ , (5.68)

where the operator acts on the particle space rk and contains the real space r as a parameter. Note
that by repeating the formula here, I have omitted the dependence of the center of charge R, and I
am also taking the one-particle part of the operator into account.

In the recent paper of Woolley [264], a different formula for the polarization operator is shown:
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P(r) =
∫
�

X(r − z) dz . (5.69)

This operator is expressed as a line integral along an arbitrary path � that ends at the position of
the particle rk.

In Sect. 5.2.2, deriving the polarization density for the Drude oscillator, I have also used a different
definition. Namely, in that section, I have avoided expressing polarization as an operator, instead I
have defined the polarization density to be the solution of Eq. (5.37).

It is not clear at first glance what is the difference between the three distinct ideas, what are their
advantages and drawbacks, or do they even correspond to the same physical idea.

One caveat of the direct integration of Gauss’s law is explained in [264] at Eqs. (27)–(30). In
particular, we can consider the polarization operator to be expressed with the Green function of the
divergence operator as

P(r) =
∫
+

g(r, r0)d(r0) d3r0 , (5.70)

with the kernel found from solving the usual defining equation for Green’s functions

∇∇∇r · g(r, r0) = −X(r − r0) . (5.71)

This, however, only defines the longitudinal part of the Green’s function

g| | (r, r0) = ∇∇∇A
1

4c |r − r0 |
. (5.72)

One of the main conclusions in [264] is that the polarization field P(r) is not a longitudinal field,
and the fact that the divergence is non-zero carries a physical interpretation. In this sense, the
transversal part can not be treated as a nonphysical gauge freedom, so considering both parts of
Green’s function in Eq. (5.71) is essential. Therefore, not all solutions to Gauss’s law can be treated
as a polarization density in a physical sense.

The discussion of the polarization density and the non-local polarizability raises the question of
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the gauge freedom. In the case of the polarization density, our defining equation is Gauss’s law,
Eq. (5.10). We can easily see from that equation that an arbitrary transversal field ∇ × A can be
added to P without changing the validity of the equation

∇ · P0(r) = ∇ ·
[
P0(r) + ∇ × A(r)

]
= −d(r) . (5.73)

This appears in contrast to the analysis in [258], where the longitudinal and transversal polarization
components of the hydrogen atom are analyzed. It might also be interesting to note that the total
integral of the P-field, which is expected to be the dipole matrix element, also depends on the
addition of an extra transversal term. Note that the analysis of the gauge freedom is more general,
with essentially the same questions arising when studying the energy of a molecule in an external
field [257].

The gauge freedom in the non-local polarizability UUU(r, r′) will correspond to the direct product of
the gauge freedoms of the polarization densities in r and r′ separately. There are two arguments
that can be made for this fact

1. Based on Eq. (5.20), UUU(r, r′) is a direct product of two independent polarization densities;
and

2. the integration by parts in r′ can equivalently be done before or after applying the divergence
in r in the derivation shown in Sect. 5.1.

Therefore, a detailed discussion of the gauge freedom in P carries over into the discussion in
UUU(r, r′).

One possible solution to the problem of gauge freedom and the unambiguous definition of P(r) is to
follow the approach of [265] and refrain from detailing the physical significance of the polarization
operator at this point.
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5.3 Non-local Polarizability Density Models

5.3.1 Non-local Polarizability of the Drude Oscillator

We now have all the knowledge to work on the non-local polarizability of the 1D Drude oscillator:
Eq. (5.42) makes it possible to calculate transition polarization matrix elements, while Eq. (5.20)
gives the exact expression of UUU(r, r′) in terms of these matrix elements.

To proceed, we note that the full wavefunction is given as (using 0 =
√
<l/ℏ)

Ψ= (G) =
(
02

c

)1/4 (
2==!

)−1/2
�= (0G) exp

(
−0

2G2

2

)
, (5.74)

while the energy reads

�= = ℏl(= + 1/2) . (5.75)

We then write the non-local polarizability as

U(G, H) =
∞∑
==1

%0,= (G)%=,0(H)
=ℏl

=

∞∑
==1

d0,=−1(G)d=−1,0(H)
2=202ℏl

=

∞∑
==0

d0,= (G)d=,0(H)
202(= + 1)2ℏl

. (5.76)

Having transformed the sum to run over the transition density matrix, we can use the exact form of
the wavefunction

U(G, H) =
∞∑
==0

d0,= (G)d=,0(H)
202(= + 1)2ℏl

=

exp
(
−02(G2 + H2)

)
2cℏl

∞∑
==0

�= (0G)�= (0H)
2==!(= + 1)2

. (5.77)

The expression we get for the non-local polarizability resembles the identity kernel written in the
basis of Hermite polynomials
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∞∑
==0

�= (0G)�= (0H)
2==!

=
√
c exp

(
1
2
02(G2 + H2)

)
X(G − H) , (5.78)

with a factor of (= + 1)−2 missing from the summation. This resemblance hints that following a
similar derivation to obtaining this identity kernel could be fruitful. The derivation uses the Fourier
transform of the Gaussian function, which is another Gaussian with transformed width

∫ ∞

−∞
exp

(
8BG − B

2

d2

)
dB = d

√
c exp

(
−d2B2

4

)
. (5.79)

Using this idea on the exponential generating formula (Rodrigues’ formula [266]) for the Hermite
polynomial, we get

�= (G) = (−1)= exp(G2)d
= exp(−G2)

dG=
= (−1)= exp(G2) d=

dG=
©« 1

2
√
c

∫ ∞

−∞
exp

(
8BG − B

2

4

)
dBª®¬ .

(5.80)

By considering the effect of the =-th derivative on the Fourier transform, we get

�= (G) = (−1)= exp(G2) ©« 1
2
√
c

∫ ∞

−∞
(8B)= exp

(
8BG − B

2

4

)
dBª®¬ . (5.81)

Using this formula in our expression from Eq. (5.77)
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U(G/0, H/0) =
∞∑
==0

�= (G)�= (H)
2==!(= + 1)2

=
exp(G2 + H2)

4c

∞∑
==0

∬ ∞

−∞

(−BC)=
2==!(= + 1)2

exp

(
8BG + 8CH − B

2 + C2
4

)
dB dC

=
exp(G2 + H2)

4c

∬ ∞

−∞

©«
∞∑
==0

(−BC)=
2==!(= + 1)2

ª®¬ exp

(
8BG + 8CH − B

2 + C2
4

)
dB dC . (5.82)

At this point, there are a set of different directions to take. In principle, the summation over = can
be evaluated, having the result

∞∑
==0

(−BC)=
2==!(= + 1)2

=
2
BC

(
W + Γ

(
0,
BC

2

)
+ ln

(
BC

2

))
, (5.83)

with W being the Euler gamma constant and Γ(0, G) is the so-called incomplete gamma function.
Further analytical work with this expression is so far inconclusive.

A different approach uses the simple 1D integral formula

∫ 1

0
−D= log D dD =

1
(= + 1)2

, (5.84)

to be used in evaluating the sum as

∞∑
==0

�= (0G)�= (0H)
2==!(= + 1)2

=

∫ 1

0

∞∑
==0

−D= log D�= (0G)�= (0H)
2==!

dD . (5.85)

At this point, we can use the identity (obtained from Mehler’s formula [267], valid for D ∈ [0, 1[)

∞∑
==0

�= (G)�= (H)
=!

(
D

2

)=
=

1
√

1 − D2
4

2D
1+D GH−

D2
1−D2 (G−H)2 . (5.86)

110



5.3. NON-LOCAL POLARIZABILITY DENSITY MODELS

Equation (5.86), together with Eq. (5.85) leads us to the following representation

∞∑
==0

�= (G)�= (H)
2==!(= + 1)2

=

∫ 1

0

− log D
√

1 − D2
exp

(
2D

1 + DGH −
D2

1 − D2 (G − H)
2

)
dD . (5.87)

Figure 5.6: Exact non-local
polarizability for the 1DQDO
model.

Equations (5.77)–(5.87), summarized, give

U(G, H) = 02

2cℏl
exp

(
−02(G2 + H2)

) ∫ 1

0

− log D
√

1 − D2
exp

(
2D

1 + DGH −
D2

1 − D2 (G − H)
2

)
dD , (5.88)

which can be evaluated numerically for every value of G and H, so, in principle, the non-local
polarizability can be plotted exactly, as is done in Fig. 5.6.

5.3.2 Non-local Polarizability of the Hydrogen Atom

While it would be desirable to obtain the non-local polarizability of the hydrogen atom, a tractable
expression for this property is yet to be found. However, knowing some transition polarization field
matrix elements (cfi. Sect. 5.2.3) allows us to discuss the approximate properties of the non-local
polarizability by taking only the first # terms into account
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UUU(r, r′) =
∑
=≠0

〈0|P̂(r) |=〉 〈=|P̂(r′) |0〉
�= − �0

≈
#∑
=≠0

〈0|P̂(r) |=〉 〈=|P̂(r′) |0〉
�= − �0

. (5.89)

The resulting formulas are quite complicated, mainly due to the fact that one needs to account for
the angular contributions in both AAA and AAA′. Assuming that both the perturbation and the response
are measured along the G axis, the first (# = 1) term in the non-local polarizability is given as

U(G, G′) =
e−3

2 ( |G |+|G
′ |)

(
GG′

(
9|G |3 + 24|G | + 18G2 + 16

) (
9|G′|3 + 24|G′| + 18G′2 + 16

)
+ 81G4G′4

)
2187c2 |GG′|3

.

(5.90)

Perturbation at d = 0.01 a.u. Figure 5.7: Decay of the non-local po-
larizability of a hydrogen atom; both the
response and the polarization is taken
along the same Cartesian axis. The
number # corresponds to the level of
truncation in the perturbative expres-
sion, as written in Eq. (5.89).

Equation (5.90) shows that polarizability behaves in a similar way as the wavefunction, the curve
being dominated by an exponential decay at medium to large distances. This localized behavior
persists even when more contributions are taken into account, as can be concluded from Fig. 5.7.
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5.4 Conclusions

The need for a non-local polarizability was already highlighted in Chapter 2, where different ways
of expressing the dispersion energy through this quantity were discussed. This final Chapter of the
thesis discussed a framework in which the non-local nature of the polarizability can be analyzed.
The introduction of this object was done via treating it in parallel with the well-known non-local
susceptibility, leading to the introduction of the polarization operator.

Since this operator was seldom discussed in the context of atomic and molecular systems, the
properties of the polarization field operator were first revisited. Having analyzed this object on
the case of the harmonic oscillator and the hydrogen atom, we had all the necessary tools to
evaluate the non-local polarizability of these systems: the harmonic oscillator could be treated
in an exact manner, whereas the only the first few contributing transition polarization operators
could be analyzed for the hydrogen atom. Nevertheless, both of these systems seem to share a
common property, with the decay of the non-local response function closely reflecting the decay
of the electron density itself.

The formalism presented in this Chapter enables the evaluation of the non-local polarizability of
model systems, atoms, and, eventually, molecules using an exact form of the polarization operator.
Provided that this function can be obtained for a wide variety of realistic systems, its essential
physical behavior could be studied, enabling us to capture the fundamental properties necessary to
describe non-local quantummechanical response and quantities derived from it with unprecedented
accuracy.
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6. Summary

Computational approaches that are desired to be applicable for a wide range of molecular systems
and materials require transferable models based on universal physical principles. To this end, the
polarizability, as a key electronic response function, which has been studied since long before the
emergence of quantum mechanics, becomes a central quantity as being naturally used to describe
both electron correlation and non-covalent interactions. Although it is well known that polarizabil-
ity is fundamentally non-local, most existing computational approaches treat this quantity within
local or semi-local approximations due to both conceptual and practical difficulties. By means of
combining analytical results obtained for quantum mechanical models with those from computa-
tional treatment of realistic systems, the work presented in this thesis facilitates the development
of a generalized (non-expanded) many-body van der Waals energy functional.

By studying the polarizability of exactly solvable model systems as well as free atoms, it was iden-
tified that the main physical factor in determining the magnitude of polarizability is the (effective)
geometric extent of quantum-mechanical systems, which can be expressed through expectation
values of one- or two-electron position operators. The novel four-dimensional scaling of the dipole
polarizability with an effective system size is shown to be applicable for atoms in molecules by in-
creasing the accuracy in evaluating molecular polarizabilities, achieved through an improvement of
parametrizing non-interacting atomic polarizabilities from partitioned (atomic) electron densities.

The method of representing atoms by quantum Drude oscillators (QDOs) was also extensively
discussed in this thesis. In accordance with the revealed quantum mechanical size-polarizability
scaling law, it was found that molecular polarizabilities can be effectively captured by means of the
model of dipole-coupled (atomic) oscillators as long as the proper scaling law is used to transform
free-atomic response quantities into atoms-in-molecules ones. The optimized parametrization
scheme to describe the electronic response by employing QDOs is also presented, demonstrating
that dipolar response quantities (as the input data for the used coarse-grained approach) are sufficient
to reproduce atomic polarization potentials in good agreement with ab initio calculations.

Based on the analysis of the interplay between the geometry of a system and its electronic response, it
is reasonable to represent the polarizability as a product of two factors, one accounting for the spatial
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extent of the system and the other encoding its electronic spectrum. Consequently, the relation
between the polarizability and excitation properties of molecules was examined in a data-driven
manner, using a large subset of the chemical space of organic compounds. Due to the diversity of
such systems, it became possible to conclusively disprove the common intuitive assumption of a
general correlation between the polarizability and HOMO–LUMO gap of molecules. This finding
is a consequence of the fact that the polarizability, as an extensive quantity, depends on the number
of atoms in a molecule, while the HOMO–LUMO gap, as an intensive quantity, is mostly defined
by the arrangement of the atoms into chemical motifs within a molecule.

Understanding the relation between two physical quantities in the chemical compound space de-
livers guidelines for molecular engineering. In particular, this was demonstrated using the mutual
independence of the HOMO–LUMO gap and the polarizability in the design of organic photode-
tectors, where it is essential to have control over both optical and electrochemical properties at the
same time. Since the two kinds of properties are decoupled by the independence of the related
quantum mechanical quantities, it is possible to devise organic photodetectors capable of detecting
a given wavelength of light while still having freely tailored electrochemical properties.

Finally, the fundamental aspects of the most general approach to describe intermolecular inter-
actions were elaborated on practical examples using the concept of non-local response functions.
Special emphasis was placed on the polarization field operator, considering the absence of a
well-developed description of this quantity for molecular systems. The knowledge gained on the
polarization field operator paves the way for the development of a robust approach for the non-local
polarizability. Since the formalism is quite elaborate, it has been applied so far only to a few model
systems. In particular, the hydrogen atom and quantum Drude oscillator were considered in detail
with a thorough discussion of their common and distinct properties.

The results presented in this thesis serve to systematically improve our general understanding of
atomic and molecular response properties at the microscopic level. In particular, the insights
gained into electronic polarizability, as the central quantity considered within the presented work,
are important for the design of novel energy functionals capable of properly capturing intermolecular
(including the ubiquitous dispersion) interactions. To this end, contributions were made in studying
the connection between the system geometry related to ground-state properties and the response of
electrons caused by their excitations, the switch from the expanded to non-expanded description
of the dispersion forces through the use of the non-local formalism, and the intrinsically present
many-body effects within the interaction energy being built based on the non-local polarizability.
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Altogether, the presented results provide important knowledge required to develop new efficient
and transferable methods applicable to complex (bio)molecular systems and materials.

6.1 Outlook and Perspectives

The novel results published in this thesis, with respect to the microscopic level of description of
electronic response in molecules as well as the framework for the non-local polarizability, open up
promising directions for future research. In what follows, some of them are briefly mentioned.

In this thesis, it was shown that the response properties of molecules (in particular, dipole polariz-
ability) are well captured through the electronic response of adequately coupled atomic contribu-
tions. The predictive power of this approach derives from both the accurate determination of the
individual atomic contributions and the proper description of the coupling between them. Within
the presented work, the correct scaling law for the dipole polarizability of atoms in a molecule
was established, which can now be used in similar approaches ensuring their improved accuracy.
However, the proposed scheme relies on Hirshfeld partitioning of the molecular electron density,
which (in its basic form) cannot properly account for polarization and charge transfer effects. More-
over, although a correlated size descriptor was already introduced in this thesis, the possibility of
partitioning a two-point response function (as opposed to the electron density, which is a local quan-
tity) has not been explored. Given the importance of the non-local nature of response properties,
accounting for such effects seems to be crucial for devising a general and transferable approach.
In this regard, a possible direction for further studies is to coarse-grain not the electron density
but a non-local response function itself. By construction, the non-local response should account
for polarization and charge transfer effects, and, provided an appropriate two-point coarse-graining
scheme, electron correlation effects can also be incorporated into the individual atomic response
within such an advanced approach.

In addition, the proposed optimized quantum Drude oscillator (OQDO) model dispenses with the
need of employing higher order response properties, which are not so accurately known in com-
parison to the dipolar response quantities used in the new parametrization scheme presented in this
thesis. The (atomic) polarization potential generated by QDOs was also examined, demonstrating
that the OQDO model matches ab initio curves up to a high degree. Nevertheless, the electrostatic
screening used to account for long-range interactions between atomic centers was still based on a
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simple model stemming from the classical electrodynamical description of the interaction between
Gaussian charge densities. It is yet to be explored whether the good prediction of the polarization
potential can be eventually employed to replace the classical model with its quantum mechanical
counterpart.

Another advantage of the model of coupled QDOs is that it is rooted in the analytically solvable
harmonic Hamiltonian, so a variety of properties can also be derived relatively simply from it.
Notably, since the (isolated) OQDO model performs accurately for higher order polarizabilities,
it is expected – but not yet tested – that multipolar response could also be captured by coupled
dipole oscillators. In principle, many other properties, including magnetic susceptibility or time-
dependent behavior, could be solved for the coupled oscillator model. Showing that a relatively
simple analytical model represents realistic response provides one with a powerful tool to study the
properties of large and complex systems with techniques that are usually restricted to atoms and
simpler molecules.

Finally, in this thesis, the evaluation of the non-local polarizability tensor through the exact form
of the polarization field operator was elaborated. The spatial part of the polarization field was
illustrated on the relatively simple models of the harmonic oscillator and the hydrogen atom, paving
the way for further studies of molecules and material systems within the framework introduced
here. Altogether, this delivers a tool to describe dispersion interactions and electron correlations
in realistic systems based on truly non-local quantum physics.
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